Our quantifiable future: the industry’s hunger for data (Authentise Weekly News-In-Review – Week 40)

Data acquisition processing is changing the world and the impact will be felt on larger scales than industrial contexts alone. IoT and IIoT technologies are gathering data points on many human and machine related activities, quantifying the world more precisely and pervasively than ever before. At this point in time, there are a few questions that can help us define the future of these processes: what are the next steps forward in this hunger for data? Do we have a functioning framework from which to extrapolate insights in a secure fashion? What will happen when technology allows us to make *anything* quantifiable? New partnerships are making data acquisition ubiquitous in the AM industry. This data will be used in quality assessments to improve part production and pipeline efficiency. Security is still paramount and new businesses and research projects are ready to prove that we have the technology to make safe and efficient data processing a reality. Businesses need to protect themselves against cyberattacks now more than ever. GPS technology is not anymore up to the standards required in the industry and everyday applications. Company Humantics is promising a microlocation-based future, which applied to AI and machine learning algorithms can enable new, high-granularity controls and services.

Oak Ridge Partners With Senvol For 3D Printing Data Collection Project

U.S. Department of Energy Secretary Rick Perry views the 3D printed proof-of-concept hull for the Optionally Manned Technology Demonstrator (OMTD). (Photo courtesy of Oak Ridge National Laboratory, Department of Energy

Oak Ridge National Laboratory (ORNL), co-developer of the Big Area Additive Manufacturing (BAAM) process and one of America’s leading technological research institutes, has signed a two-year research agreement with the Senvol additive manufacturing database. In the collaboration, ORNL will use Senvol’s Standard Operating Procedure (SOP) to evaluate the best processes for data collection and apply it to quality assessment of 3D printer feedstock materials.

Read more here.

Three-Layer Technique Helps Secure Additive Manufacturing

[…] AM could become a target for malicious attacks – as well as for unscrupulous operators who may cut corners. Researchers from the Georgia Institute of Technology and Rutgers University have developed a three-layer system to verify that components produced using AM have not been compromised. Their system uses acoustic and other physical techniques to confirm that the printer is operating as expected, and nondestructive inspection techniques to verify the correct location of tiny gold nanorods buried in the parts. The validation technique is independent of printer firmware and software in the controlling computer.

Read more about the system at RDMag.

Introducing Humatics: Revolutionizing How People and Machines Locate, Navigate and Collaborate

Imagine a tool that will only drill a hole at the exact right spot, a large format robotic 3D printer with unprecedented precision, a drone that hovers precisely indoors, and augmented reality glasses that project ultra-precise images onto the world you see. Now imagine AI and machine learning applied to every conductor, every factory worker, every robotic collaboration: technology placing our work within a broad human context. That’s where Humatics is going.

Take a look at Humantics at their website.

If you wish to be kept updated on a daily basis on movements in the AM/IIoT world check out Twitter feed!