The Stock is Stuck in the Past: tech is changing the warehouse (Authentise Weekly News-In-Review – #129)

The entire supply chain is being redefined by transformative technologies, turning on their heads old notions of manufacturing and shipping. Change is coming from multiple angles, all aimed towards a single, common goal: making the warehouse obsolete. The main reason is to address a greater need for production agility, being locked down by large inventories of items that are expensive to maintain and risk getting surpassed before even being used. The future is geared towards high customization and rapid delivery. By inching additive manufacturing closer to being a production technology, items can be produced on-demand and in-situ, jumping over a large chunk of a logistical nightmare. Speaking of which, IIoT networks are making it easier than ever to analyze the data necessary to maintain a high operational awareness, enabling pro-active planning instead of reactive.

The Rise of the On-Demand Warehouse

In China the expectations are even more demanding [than Amazon’s] — JD.com (a huge Chinese online retailer) makes 90% of its deliveries within 24 hours, with 57% arriving within 12 hours. Experiences like this are delightful for the customer and fascinating for the investor. What allows such a supercharged supply chain to exist? What hurdles have to be overcome? And, more importantly, what are potential future opportunities and what would it take to get there?

Read the full article at Medium.

3D Printing Is Finally Ready For Its Close-Up

Selective laser melting, direct metal laser sintering, 3d printing, industry 4.0

Zero inventory” has been mostly unobtainable for manufacturers. But cutting-edge 3D printing technology is giving managers renewed hope. Carbon announced Tuesday it raised $260 million in growth funding. This San Francisco company is developing a platform executives claim will bring 3D printing to high-volume production. This would mean the end of inventories, and the beginning of new business models.

Keep reading at Forbes.

Why logistics scenarios matter for the future of the industrial IoT

A tanker at sea.

We will see faster speeds throughout the chain, which will become more efficient, convenient and sustainable by orders of magnitude. That’s because 5G will power the Industrial Internet of Things (IIoT), enabling large-scale, real-time connectivity all the time. What if all of these devices could interact with one another without human intervention? What would this type of constant connectivity look like at scale, in complex logistics operations, for example?

Read the full article at World Economic Forum.

 

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Why “Edge Computing” is edging closer and closer (Authentise Weekly News-In-Review – #121)

There are various reasons to be excited about edge computing. It proposes a localized way to deal with data analysis, making individual nodes independent of a central hub. This offers greater levels of security, isolating data to where it needs to be processed, as well as quicker responsiveness, obtaining actionable insights without the need for data transfer. There are still a few roadblocks to sort before the technology becomes fully applicable to all industrial settings. Mainly, these have to do with the convergence of IT and OT fields, enabling easier communication and action. The technology is there when it comes to processing and data transfer. Next generation PLCs address the needs of an edge network, reducing complexity along with installation time and costs. In parallel, 5G connection will enable extremely fast communication for large volumes of data (already proving itself valuable for autonomous cars). Decentralizing operations, in manufacturing and elsewhere, will lead to more secure and optimized workflows.

Is IIoT Edge Computing Ready Yet?

Image of a cloud and edge computers linked to it

Edge computing is evolving because of the high demand to move computer processing closer to sensors to decrease latency and improve efficiency. The IoT device at the edge must be responsible for computing, storing and network connectivity, all in a small form factor. Depending on the requirement, processed data from the sensors can be sent to the cloud either in parts or all at once.

Read the full article here.

The IIoT Challenge

https://www.automationworld.com/Benson%20Hougland%2C%20Opto%2022

[…] getting that data from the edge of the network where it’s produced to the databases and people who need it can be a challenge. Communication for control as well as monitoring and data acquisition can be even tougher. For the IIoT applications we’re doing now, we need a new approach—a new product that does much more than a PLC or PAC, a product that shrinks the middleware and improves security. That product has recently appeared. It’s called EPIC—Edge Programmable Industrial Controller. Because an EPIC replaces middleware and reduces the steps required to get data, it reduces complexity, lessens security risks, and decreases the time and expense of installation and maintenance.

Read the full article at Automation World.

5G’s Important Role in Autonomous Car Technology

5G in the auto industry

The fifth-generation wireless technology is expected to connect almost everything around us with an ultra-fast, highly reliable, and fully responsive network. 5G will allow us to leverage the full potential of advanced technologies such as AI, VR, and the Internet of Things (IoT). Self-driving cars use hundreds of sensors to make vehicles faster and smarter. These sensors generate unprecedented amounts of data, much more than any other IoT adoption would. Handling, processing, and analyzing this amount of data requires a much faster network than the existing 4G technology. Autonomous cars, systems require incredible data processing capabilities and speeds needed to mimic the timing of human reflexes.

Read the rest here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Can Data Connectivity Catapult AM Forward? (Authentise Weekly News-In-Review – Week 76)

AM is a manufacturing technology like many other but, unlike most, has numerous variables at play in making the final part. Most are controlled by the initial setup by the lab technician, but after that there is very little that goes in the way of making sure that the best result is achieved. In-print monitoring is crucial yet still hard to apply properly. Techniques like machine learning enable automated pinpointing of potential issues, stopping before precious time and resources are wasted. This will be made possible thanks to a slew of sensors that power computer-vision algorithms. The bandwidth required for these applications will be huge, something that coming 5G networks will be able to support, together with other IIoT applications previously impossible. In the future, self-correcting printers will make AM much more reliable and efficient. There is already so much that the data coming from printers can teach to improve operational performance. At Authentise we have developed smart analytical tools to help you leverage all that data, and are now moving towards letting you control printer directly, with remote and automated tools.

Machine Learning and Metal 3D Printing Combine for Real-Time Process Monitoring Algorithm

Two researchers from the College of Engineering at Carnegie Mellon University (CMU) have figured out how to combine 3D printing and machine learning for real-time process monitoring, a practice which can detect anomalies inside a part while it’s being 3D printed. Their research could one day lead to self-correcting 3D printers.

Read the full story here.

New whitepaper examines smart metrology for additive manufacturing

If factories are to become faster and more flexible, inspection is a bottleneck to overcome, especially in industries where 100% inspection is required. In this new whitepaper by Autodesk and Faro, smart metrology for the additive manufacturing industry. Components made by additive manufacturing technologies (AM) have more variables than machined parts. Faster inspection for additive manufacturing is more challenging because AM processes are not as accurate as cutting metal. Better metrology for AM will help reduce feedstock and costs.

Check out the whitepaper here.

How Will 5G Change Robotics and the IIoT?

As efficient and effective as 4G technology is, it pales in comparison to the faster, more reliable platform of 5G. If the new protocol meets its advertised speeds of 100 gigabits per second, this rates 5G at a speed of 1,000 times faster than 4G. Given the increasing size of datasets, the greater need for real-time data processing and more reliance on large-scale and long-term data storage, it’s easy to see how 5G benefits everyone.

Read the full article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!