How AI is changing the face of manufacturing, and much more (Authentise Weekly News-In-Review – Week 85)

As AI is getting a foothold in pretty much every corner of the digital world, industries like manufacturing have a lot to gain by employing its perks. We at Authentise know very well the power of machine learning and the many other tools that enable our customers to get deeper, insightful looks into their production and save time in production. The next generation in Additive AI will likely be in-print monitoring platforms. The way these technologies are affecting every industry scared people into thinking that there’s going to be less room for human employees. Not only will there be value in the collaboration between humans and AIs, but new types of jobs will be created because of it. On a side note, it’s also interesting to see how 3D printing is enabling new computing paradigms to be researched, closing the loop beautifully.

Kansas State University Researchers Develop AI System For 3D Printing Process Monitoring

Researchers from Kansas State University’s Department of Industrial and Manufacturing Systems Engineering (IMSE) have developed a new quality monitoring system for the 3D printing process. With integrated supervised machine learning, a camera, and image processing software, the researchers created a production quality monitoring system for assessing 3D printed parts in real-time.

Read the full article here.

New Supply Chain Jobs Are Emerging as AI Takes Hold

Companies are cutting supply chain complexity and accelerating responsiveness using the tools of artificial intelligence. Through AI, machine learning, robotics, and advanced analytics, firms are augmenting knowledge-intensive areas such as supply chain planning, customer order management, and inventory tracking. What does that mean for the supply chain workforce? It does not mean human workers will become obsolete. In fact, a new book by Paul Daugherty and H. James Wilson debunks the widespread misconception that AI systems will replace humans in one industry after another. While AI will be deployed to manage certain tasks, including higher-level decision making, the technology’s true power is in augmenting human capabilities — and that holds true in the supply chain.

Read the rest at Harvard Business Review.

This AI Calculates at the Speed of Light

Researchers from UCLA on Thursday revealed a 3D-printed, optical neural network that allows computers to solve complex mathematical computations at the speed of light. […] researchers believe this computing technique could shift the power of machine learning algorithms, the math that underlies many of the artificial intelligence applications in use today, into an entirely new gear.

Read the full article at Discover Magazine.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

How to fund Digital Manufacturing? (Authentise Weekly News-In-Review – Week 80)

Funds like Atomico are already forming a portfolio of startups poised to disrupt many verticals through IIoT, robotics and AI, and they are showing excitement for the future as well. There is tremendous value to be created through digital startups, many of which take on daunting challenges. The aptly named Automation Everywhere wants to bring, you guessed it, automation to any mundane human task, both physically and digitally, and has just raised $1.8 billion valuation. Similarly, company Katerra wants to reinvent how the construction industry is structured and has already raised $865 million in venture capital. But is Venture Capital really the right way to fund a B2B industry with slow sales? The fact that Automation Everywhere waited 15 years to raise its first funding, and Katerra is backed with $865m from Softbank indicates maybe not. Maybe more patient private capital, or even public markets – with their more limited growth objectives – are the right source of funding. Foxconn backing Andrew Ng, while Flex has backed ex-Autodesk CEO Carl Bass with $200m indicates it may be so. Our prediction: We’ll see a lot more interesting funding mechanisms in this industry going forward.

Data, AI & Robots: Atomico’s Take on Industry 4.0

Inexpensive sensors, cheap wireless communications infrastructure, highly scalable cloud-based data processing and novel machine learning methods have converged to a point where the building blocks are in place for a new Machine Age. Venture capital investment in internet-of-things in Industry (the decidedly ugly-sounding “IIoT”) is at an all time high, according to a CB Insights report on the topic, with over $1bn invested in Q4 2017 alone.

Read the full article at Medium.

Silicon Valley company that automates ‘mundane’ tasks with robots gets nearly $2 billion valuation

A Silicon Valley company that uses bots to automate certain tasks previously done by human workers has reached a $1.8 billion valuation with a new fundraising from several companies, including Goldman Sachs. San Jose, California-headquartered Automation Anywhere this week announced a $250 million round of fundraising — its first round of outside funding despite being in business for 15 years.

Read the rest here.

Can Silicon Valley Disrupt How We Build?

940

Katerra announced that it had acquired Michael Green Architecture, a 25-person architecture firm in Vancouver, British Columbia. On June 12, the company revealed that it had bought another, larger architecture firm, Atlanta-based Lord Aeck Sargent. This comes five months after Katerra raised $865 million in venture capital from funders led by SoftBank’s Vision Fund, which has also invested heavily in the co-working startup WeWork. “The construction industry is ripe for digital disruption,” said co-founder and chairman Michael Marks in a press release. “This new round of funding will enable us to further invest in R&D and continue to scale the business.”

Read the full article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

New design thinking is helping AM reach new heights (Authentise Weekly News-In-Review – Week 75)

AM is a fantastic piece of technology, but sometimes it can only go as far as the design behind it. That’s why, following the rise and promise of 3D printing techniques, new ways of designing by means of CAD and reasoning have been born, and they help boost the capabilities of AM in a number of ways. Take General Motors for example: through a technique called generative design, they are able to procedurally build the volume of a part to better address its functions and operational stresses, while at the same time saving precious weight. In other cases, new materials and design possibilities come together to enable unprecedented applications like, for example, a customized inflatable for future car interiors. With this kind of thinking, we start to see how this new wave of design methodologies is enabling AM processes to actually work. The 3D printed bridges and houses that we often hear about wouldn’t be much of a revolution by 3D printing alone, if not for a smart and optimized design that can make it work and excel.

GM and Autodesk Using Additive Manufacturing for Lighter Vehicles

GM is using Autodesk’s generative design technology and additive manufacturing to fabricate lighter automotive parts; this seat bracket is 40% lighter and 20% stronger than its predecessor. […] It uses cloud computing and AI-based algorithms to rapidly explore multiple permutations of a part design; it can generate hundreds of high-performance, often organic-looking geometric design options based on goals and parameters set by the user.

Read the full article here.

MIT’s 3D-printed inflatables could shape the interiors of cars in the future

Car interiors could morph into different configurations at the flick of a switch, using 3D-printed inflatable structures developed by researchers at the MIT. The Self-Assembly Lab at Massachusetts Institute of Technology (MIT) worked with BMW on the project, called Liquid Printed Pneumatics. The German auto brand wanted to see how the lab’s experimental engineering techniques could help it realize some of the shapeshifting features imagined in its futuristic concept cars.

Keep reading at Dezeen.

Additive Construction: From the 3D-Printed House to the 3D-Printed High-Rise

AM has begun to affect nearly every industry, from healthcare to aerospace, making it possible to create unique geometries with unique properties. One industry where 3D printing’s impact is at an even more nascent stage in construction. There are firms and research groups exploring the use of 3D printing as a building technology, but additive construction is still so young that its exact purpose and benefits remain speculative and unclear. Why, other than for sheer novelty, squeeze concrete out of a nozzle to fabricate a building when you can rely on traditional methods?

Read the full article here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Perspectives on AI and the Industry of the future (Authentise Weekly News-In-Review – Week 72)

The field of AI is nowadays established as a core industrial drive in any advanced country. Its wide-ranging applications make it a valuable asset in almost any kind of operation, enabling businesses with unparalleled, yet constantly improving performance. Today, in an industrial setting, AI is being used for process monitoring, data analysis and predictive modeling. It is not surprising to hear of new partnerships in a field such as oil and gas prospecting, where these capabilities can help predict maintenance periods and better process noisy sensor data. The same approach can be used for example in agriculture, where troves of data from a constellation of devices can provide new insights into operational efficiency. The potential for revenue and economic growth is enormous and the international competition is fiercer than ever. Countries such as India are putting resources towards entering a market led by the US and China, but you can definitely expect the list getting longer. How Manufacturing will use AI beyond predictive maintenance is completely open. We have some ideas. What will you do?

Total and Google to develop AI solutions for oil and gas exploration

Total has signed an agreement with Google Cloud for the joint development of artificial intelligence (AI) solutions to accelerate oil and gas exploration and production. Total Group senior vice-president and chief technical officer Marie-Noëlle Semeria said:

“Total is convinced that applying AI in the oil and gas industry is a promising avenue to be explored for optimising our performance, particularly in subsurface data interpretation.”

Check the full article here.

How Industrial AI Can Maximize the Potential of Agriculture’s Planting Season

Industrial AI improves the grower life cycle by turning mountains of otherwise unused ag data into meaningful intelligence. It works at machine scale by synthesizing information from different ag data sources – assets, sensors, weather, satellites, and other systems – and surfacing insights, predictions and recommendations growers can act on. Growers can use new intelligence gained from industrial AI seamlessly and autonomously in the context of their daily workflow to make smarter decisions.

Read it all at PrecisionAG.

India wants to fire up its A.I. industry. Catching up to China and the US will be a challenge

A tech start-up at its office in Gurgaon, India.

India has ambitions to fire up its artificial intelligence capabilities — but experts say that it’s unlikely to catch up with the U.S. and China, which are fiercely competing to be the world leader in the field. An Indian government-appointed task force has released a comprehensive plan with recommendations to boost the AI sector in the country for at least the next five years — from developing AI technologies and infrastructure, to data usage and research.

Read the full article here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Simulation: how machines are better problem-solvers (Authentise Weekly News-In-Review – Week 38)

Physical testing can only take us so far. New techniques in digital simulations enable us to experiment with every variable at play to guarantee the best desirable performance. This is the case, for example, when trying to pinpoint the reason for behind “material redistribution”, a phenomenon that leads to defects in printed metal parts. Simple observation and image recognition can only lead to partial understanding (although Nvidia’s GPUs have shown that huge strides have been made in that regard) as part of the reactions happen below the surface or in other unaccountable regions. Computer models of the system, coupled with high-speed monitoring of the same, can give unprecedented holistic vantage points when investigating these activities. Similarly, simulation can take researchers far in terms of understanding long-extinct animals’ behavior. Hydrodynamics, bone-structure, muscle arrangement, all this can be taken into account when determining the most plausible gaze for creatures that lived millions of years ago, in a system which can then be 3D printed and tested tangibly. Similarly, Canadian researchers want to take it a step further by merging AI simulation with manufacturing capabilities, creating a 3D printer which dissects a problem and finds the appropriate solution automatically.

Team finds reason behind defects in 3-D printing

LLNL finds reason behind defects in 3D printing

In a study published by Scientific Reports , LLNL scientists combined ultrafast imaging of melt-pool dynamics with high-resolution simulations, finding that particles of liquid metal ejected from the laser’s path during the powder-bed fusion additive manufacturing (PBFAM) process—commonly called “spatter“—is caused by the entrainment of metal particles by an ambient gas flow, not from the laser’s recoil pressure, as previously believed.

Read more at Phys.org

University of Southampton 3D Printers Solve Million Year Old Flipper Mystery

To determine the swim-path of plesiosaur flippers Southampton researchers, alongside partners at the University of Bristol, 3D printed models based on the dimensions of a fossil skeleton. According to the supporting paper, experiments show “that plesiosaur hind flippers generated up to 60% more thrust and 40% higher efficiency when operating in harmony with their forward counterparts, when compared with operating alone.”

Read the fully article here.

Canadian Researchers in Pursuit of Artificially Intelligent 3D Printers

Edward Cyr examines a 3D rendering of a lattice structure. Photo via The Star Phoenix

Edward Cyr’s research, funded by a McCain postdoctoral fellowship, aims to develop an AI system that will approach a problem and 3D print its solution after considering all the alternatives. Cyr acknowledged that a human problem solver would only be able to come up with an optimal design after testing thousands upon thousands of ideas.

A computer, on the other hand, “can actually model a total design space and tell us which one is the best, and it can even come up with things we might not even think of.”

Read the full article here.

 

Visit our Twitter feed to get daily news on IIoT/AM and updates to our services!