The experimental, and unregulated, field of Bioprinting (Authentise Weekly News-In-Review – #120)

Bioprinting is a squishy topic. It sounds good in its sci-fi theory but when you nail down the practical aspects it becomes much more complicated. The research is being done to bring that vision to reality, making over-the-top announcements, from vascular tissues to entire patient-specific heart 3D printing, that mislead the reader into thinking we might already live in the future. However, there are ethical and legal conundrums to consider alongside the technical hurdles. The field is so new that legislators struggle to comprehend what’s being done in the present day, let alone what will be possible tomorrow. Bioprinting is a concoction of frontier fields like stem cells, gene editing, and biocompatible materials. Researchers are taking unorthodox approaches to the problems they face, even employing generative textile designers to design organic structures. There will need to be safety regulations, protocols, all angles still need to be figured out. After all, we’re talking about our bodies, and we don’t want defective software or printing processes to pose any kind of risk.

Nervous System Works with Rice University Researchers 3D Printing Vascular Networks

Nervous System has been heavily engaged in experimenting with 3D and 4D printing of textiles in the past years, and all their research is paying off now as they find themselves engaged in the realm of tissue engineering. Assistant professor Jordan Miller [from Rice University] invited the Nervous System team to join his researchers on an incredible journey to fabricate examples of possible vascular networks via bioprinting—harnessing their knowledge of software and materials to find a way to create soft hydrogels.

Read the article here.

Scientists Create World’s First 3D-Printed Heart Using Patient’s Own Cells

Researchers at Tel Aviv University have successfully printed the world’s first 3D heart using a patient’s own cells and biological materials to “completely match the immunological, cellular, biochemical, and anatomical properties of the patient.” Until now, researchers have only been able to 3D-print simple tissues lacking blood vessels.

“This heart is made from human cells and patient-specific biological materials. In our process these materials serve as the bioinks, substances made of sugars and proteins that can be used for 3D printing of complex tissue models,” said lead researcher Tal Dvir in a statement.

Read the article here.

Bioprinting: What are the Legal Implications of Defective Design Software?

3D printing has taken off at lightning speed, with innovations emerging around the world continually—and virtually unregulated. While there may be some serious discussions and expectations regarding ownership and common sense regarding designs, most of the legal angles are still in the embryonic stages.

“In the medical 3D bioprinting field, three theories are, in principle, relevant to the protection of the patient against injuries that are attributable to defective CAD software: (i) medical malpractice (a subset of negligence law), (ii) breach of warranty under the Uniform Commercial Code (UCC), and (iii) strict liability,” states researcher Jamil Ammar. “None of these theories, however, adequately address the range of injuries that could potentially arise due to use of defective CAD software.”

Read the full article at 3DPrint.com

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

3D printing scalability: more than a hardware problem (Authentise Weekly News-In-Review – #114)

One of the major hindrances to 3D printing’s expansion right now is scalability. How can a process tailored and designed for customization also be an ideal candidate for the highly systematized environment of a production facility? How can it be employed to retain its features like agility and flexibility while providing the level of performance required to make a business profitable? The answer is multifaceted, and it has to do with the technology itself as well as the infrastructure that we build around it. Researchers are working towards designing printing techniques that are both reliable and efficient at various scales, and significant strides have been made in that regard. In parallel, one must consider the surrounding pieces of this puzzle, such as an automated pipeline and a smart, data-driven decision-making platform. It just cannot work if you couple 3D printing technologies with the old way of making factories work. In many respects, we must rely on AIs and robotic systems to make informed decisions. We are already starting to make this vision come to life, with IIoT networks feeding into simulations and triggering automated processes. Authentise is the leader in data-driven automation for production scale 3D printing: we already use machine learning algorithms to drive our estimation processes and thorough automation features throughout our 3Diax platform, and are excited to show you more of what we are working on very soon!

Israeli company announces tiny triumph in micron-level 3D printing

Nanofabrica micron-level 3D-printed part

Startup Nanofabrica (Tel Aviv) announced that it has developed an AM platform that provides an end-to-end bespoke process for manufacturers seeking micron and sub-micron levels of resolution and surface finish. Nanofabrica’s AM process is based on digital light processing (DLP), which is combined with adaptive optics to achieve repeatable micron levels of resolution. This tool in conjunction with an array of sensors allows for a closed feedback loop.

Read the full article on Plastic Today.

Scalable platform 3D prints bone

3D printed construct

Researchers from Syracuse University have achieved significant progress towards the engineering of large-scale bone tissue scaffolds. Stephen Sawyer and colleagues have designed, built and tested a scalable platform for the structured growth of bone mineral using only a commercially available 3D printer and inexpensive materials. The design surpassed previous difficulties associated with the supply of oxygen to bone growing cells. Traditional designs relied on oxygen diffusion through the cell containing structure, which had, until now, limited the size of bone structures that could be built.

Read the rest here.

Brain code can now be copied for AI, robots, say researchers

Modeling robotics on the human brain

Researchers at the Korea Advanced Institute of Science and Technology (KAIST), the University of Cambridge, Japan’s National Institute for Information and Communications Technology (NICT), and Google DeepMind have argued that our understanding of how humans make intelligent decisions has now reached a critical point. Robot intelligence can be significantly enhanced by mimicking strategies that the human brain uses when we make decisions in our everyday lives, they said.

Read the full article here.

We are going to exhibit at AMUG! Come visit us at booth #37 from March 31st – April 4th.

AMUG_2019_Booth_Map

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Small scale printing poised to make a big impact (Authentise Weekly News-In-Review – Week 102)

3D printing is usually making the news for big plane components or successful rocket tests. Unsurprisingly, there’s a world of small applications in which the technology can, and is, making an impact. Typical subtractive methodologies are pretty limited at the micro level: 3D printing brings customization and extremely high-precision to labs all over the world. Micro-scale printing is on the table mainly thanks to advancements in material sciences, with polymerization and astonishing “implosion fabrication” techniques. Still, it never hurts to have a hand from biological agents who can do the job for you and when it comes to bio-printing, it’s the way to go to obtain functional, “living” materials.

Microlight3D Offers a New Kind of Microscale 3D Printing

For 15 years, Patrice Baldeck and Michel Bouriau led intense research and development at the Université Grenoble Alpes. They were working on a two-photon polymerization 3D printing process that would become the basis of Microlight3D, founded in 2016. The process would be the first-ever non-additive two-photon polymerization direct laser writing technology. The benefits of the technology are many. It produces extremely high resolution and smooth surface finish comparable to injection molding. It also offers a great deal of design flexibility and eliminates the need for post-processing. It’s a fast technology that produces robust parts in any shape – 100 times smaller than a strand of hair.

Read the full article here.

New Shrinking 3D Printer

The idea behind the shrinking 3D printer is to print an object and then shrink it to the required size – a technique known as implosion fabrication. The most amazing part about this 3D printer is that it can be adapted to work with different materials like metals, quantum dots and even DNA. Additionally, complicated shapes like microscopic linked chains can be printed too. In multiple tests, the team found that they could shrink a structure by about 8000 times.

Read the rest at Forbes.

Creating Living Materials Using Bacteria and 3D Printing

In a paper entitled “Programmable and printable Bacillus subtilis biofilms as engineered living materials,” a team of researchers discusses how they used 3D printing to produce custom nanoscale biomaterials from the natural secretion of amyloid fibers from the bacteria Bacillus subtilis. The bacteria generate biofilms by secreting amyloid fibers via a tightly controlled cluster of genes called the tapA-sipW-tasA operon. The researchers were able to genetically modify the TasA protein and introduce functional chemical groups onto the TasA fibers excreted by the bacteria. This means that the bacterial films could be designed to act as functional living materials.

Read the full article here.

 

From the entire Authentise team, we wish you a very Merry Christmas!

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Beyond Bioprinting: The Way Ahead In Biological AM (Authentise Weekly News-In-Review – Week 30)

Welcome to our 30th News In Review for 2017!

We’ve all heard of the 3D printed heart and ear tissue. There is much more to bioprinting than these initial steps and, thanks to new technologies, explorations and endeavors, the road ahead is looking a whole lot more exciting. New technologies enable researchers with nanoscale control of the manufacturing environment, both low-powered and more precise, to create bioprinted scaffolds for a variety of uses. Synthetic biologist will surely make good use of the new tech: 3D printed bioreactors can be manufactured to generate specific kinds of biologic products, like proteins of even antibiotics. Bioprinting is skyrocketing, beyond the confines of our atmosphere. NASA has revealed plans to bring bioprinted cancer cells to the ISS in order to study potential treatments in a controlled, zero-g environment.

Light-directed assembly using gold nano-rods opens up 3D bioprinting applications

Using gold nano rods and near infrared laser for bioprinting

[…] the use of high-powered lasers to pattern micro/nanoscale objects has drawbacks. In particular, the substantial energy required to move material or objects means that high throughput of material is not possible. Now a team at the National University of Singapore have announced another technique to engineer living tissue. In the paper “Effective Light Directed Assembly of Building Blocks with Microscale Control” a method for improving control over the micro structure with light-directed assembly is described. The researchers believe their method could have applications for bioprinting, tissue engineering, and advanced manufacturing. Working with microfluidic-fabricated monodispersed biocompatible microparticles the scientists were able to fabricate a structure.

Check out the rest of the article here.

A better way to make drinks and drugs

Carefully selected molds churn out antibiotics. Specially engineered bacteria, living in high-tech bioreactors, pump out proteinaceous drugs such as insulin. Some brave souls even talk of taking on the petroleum industry by designing yeast or algae that will synthesize alternatives to aviation fuel and the like. Dr Nelson’s bioreactors are composed of a substance called a hydrogel, which is about 70% water. The remaining 30% is a special polymer, infused with yeast. [It can] be extruded smoothly through the nozzle of a 3D printer.The fun starts when such a [hydrogel] cube is plopped into a solution of glucose. The hydrogel is permeable to this solution, so the yeast is able to get to work on the glucose, converting it into ethanol as if it were the sugar in the wort of a brewery. […] The surprise was that it keeps on doing so, day after day, week after week, as long as the fermented solution is regularly replaced with fresh. The team’s bioreactors have continued to produce ethanol in this way for over four months now, with no signs of slowing down.

Read the full article on The Economist’s website.

NASA to take cancer fight into space with bioprinted cells

A BioCell which can contain six samples. Photo via BioServe.

NASA has revealed plans to grow bioprinted cancer cells in space in a bid to advance cancer research. Utilizing the microgravity environment, NASA hopes to the cell structures will grow in a more natural spherical shape. Since, back on earth in vitro the cells have only able been able to grow in two-dimensional layers. However to harness the cells without the presence of gravity, NASA is hoping to employ magnets.

Read more about NASA’s plans here.

 

This is it for this week, don’t forget to check out our Twitter, Facebook and Linkedin feeds for more news on the AM/IIoT world as well as updates to our services.

See you next week!

Enabling Research Through AM (Authentise Weekly News-In-Review – Week 01)

Hi everyone, welcome back to the new year with a more weekly 3D printing news from Authentise!

Through AM scientists are able to go where traditional manufacturing simply couldn’t take them. NASA is keeping up the pace for the entirely 3D printed rocket by testing more and more components up for the challenge, ROSCOSMOS is planning to add a bioprinter to the ISS’s arsenal and test it at microgravity and, while we’re at it, stem cell research is getting a boost from 3D printing’s ability to create cartilage’s structures.

Are you aching for your daily fix of science with a side of AM? Let’s dig in.

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

Recent tests of a developmental rocket engine at NASA‘s Marshall Space Flight Center in Huntsville, Alabama, produced all the performance data engineers were hoping for, along with the traditional fire and roar. But this engine is anything but traditional. Marshall engineers are designing each of the components from scratch to ultimately be made entirely by AM methods …The series of 12 test firings in late fall brought them a big step closer to that goal, said Andrew Hanks, test lead for the project. The fuel turbopump, fuel injector, valves and other major engine components used in the tests were 3D printed, with the exception of the main combustion chamber.

Read more of these test firings at NASA.

 

Russian space agency Roscosmos to 3D print living tissue on ISS

Russian scientists are planning to install and operate a 3D bioprinter aboard the ISS, according to an official source. They believe that microgravity conditions could actually improve the bioprinting process. […] They believe that significant progress in bioprinting can be achieved by placing equipment in microgravity conditions, since the lack of gravity could potentially help to keep deposited cells in place.

Read the full article here.

Scientists Are Creating New Ears With 3D-Printing and Human Stem Cells

BNWM3H.jpg

Inspired by the earmouse, doctors at the University of California at Los Angeles and the University of Edinburgh’s Centre for Regenerative Medicine have perfected a new technique to grow a fully formed human ear, using patients’ own stem cells. They begin with a 3D printed polymer mold of an ear, which is then implanted with stem cells drawn from fat. As these stem cells differentiate into cartilage, the polymer scaffold degrades, leaving a full “ear” made of mature cartilage cells. The new approach could “change all aspects of surgical care,” says Dr. Ken Stewart, one of the researchers and a plastic surgeon at the Royal Hospital for Sick Children.

Read the whole article at Smithsonian.

 

More next week

Integrating the Future & the Present (Authentise Weekly 3D News Review – Week 51)

Hi all, welcome to another (festive!) edition of the weekly review by Authentise!

We hope you had a merry Christmas time! As we go back to our usual day-to-day, we gathered last week’s juiciest 3D news. Many companies are tackling the issues of integrating their work on new tech into present standards and workflows. Sounds like Organovo’s work on pre-clinical bioprinting is finally getting there, Oas are standards for AM enabled medical. Other times industrialization doesnt need to be so complicated: IIoT allows smaller, incremental steps to be taken to integrate new tech and practices to benefit businesses.

Let’s dig in.

Organovo 3D bioprinted liver tissue could make it to the FDA by 2019

Organovo demonstrate toxicity testing with ExVive liver product. Image via Organovo

Speculation on 3D printed tissue coming to humans sooner than we think is backed by new pre-clinical findings from 3D bioprinting company Organovo. Though it will still be 3–5 years before the U.S. based Organovo apply for clearance of their liver tissue, that is still sooner than perhaps even the FDA had in mind. Pre-clinical trial data shows that 3D bioprinted liver tissue has been successfully planted into lab-bred mice. The human liver-cell tissue shows regular functionality and, at this stage, is being explored as a suitable patch for the organ.

Read more at 3D Printing Industry.

3D Printing Production Medical Devices — Pitfalls And Best Practices

In May 2016, the FDA released a draft guidance titled Technical Considerations for Additive Manufactured Devices. Any manufacturer or organization considering 3D-printed components during the development of a medical device should refer to this document. The guidance goes into detail regarding risk and other considerations related to 3D printing, as well as how to employ 3D printing within device development.

Read the article here and the FDA guidance here.

Use Existing Data to Optimize IIoT Sensor Deployment

It is hard to know where to start [in IIoT], and whether the solution being designed will be palatable to the end customer in terms of function and price. Rather than ordering highly marketed solutions from outside the enterprise and “tipping” consultants with exorbitant fees, they can find ingredients that are already on hand, apply basic analytics, and come up with some surprisingly tasty ways to translate raw data into process information to improve maintenance or business decisions.

Read about the useful, and easy, ways IIoT can easily be integrated in your business here.

 

We hope to see you next week for another edition brought to you by Authentise!