Enabling Research Through AM (Authentise Weekly News-In-Review – Week 01)

Hi everyone, welcome back to the new year with a more weekly 3D printing news from Authentise!

Through AM scientists are able to go where traditional manufacturing simply couldn’t take them. NASA is keeping up the pace for the entirely 3D printed rocket by testing more and more components up for the challenge, ROSCOSMOS is planning to add a bioprinter to the ISS’s arsenal and test it at microgravity and, while we’re at it, stem cell research is getting a boost from 3D printing’s ability to create cartilage’s structures.

Are you aching for your daily fix of science with a side of AM? Let’s dig in.

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

Recent tests of a developmental rocket engine at NASA‘s Marshall Space Flight Center in Huntsville, Alabama, produced all the performance data engineers were hoping for, along with the traditional fire and roar. But this engine is anything but traditional. Marshall engineers are designing each of the components from scratch to ultimately be made entirely by AM methods …The series of 12 test firings in late fall brought them a big step closer to that goal, said Andrew Hanks, test lead for the project. The fuel turbopump, fuel injector, valves and other major engine components used in the tests were 3D printed, with the exception of the main combustion chamber.

Read more of these test firings at NASA.

 

Russian space agency Roscosmos to 3D print living tissue on ISS

Russian scientists are planning to install and operate a 3D bioprinter aboard the ISS, according to an official source. They believe that microgravity conditions could actually improve the bioprinting process. […] They believe that significant progress in bioprinting can be achieved by placing equipment in microgravity conditions, since the lack of gravity could potentially help to keep deposited cells in place.

Read the full article here.

Scientists Are Creating New Ears With 3D-Printing and Human Stem Cells

BNWM3H.jpg

Inspired by the earmouse, doctors at the University of California at Los Angeles and the University of Edinburgh’s Centre for Regenerative Medicine have perfected a new technique to grow a fully formed human ear, using patients’ own stem cells. They begin with a 3D printed polymer mold of an ear, which is then implanted with stem cells drawn from fat. As these stem cells differentiate into cartilage, the polymer scaffold degrades, leaving a full “ear” made of mature cartilage cells. The new approach could “change all aspects of surgical care,” says Dr. Ken Stewart, one of the researchers and a plastic surgeon at the Royal Hospital for Sick Children.

Read the whole article at Smithsonian.

 

More next week

Integrating the Future & the Present (Authentise Weekly 3D News Review – Week 51)

Hi all, welcome to another (festive!) edition of the weekly review by Authentise!

We hope you had a merry Christmas time! As we go back to our usual day-to-day, we gathered last week’s juiciest 3D news. Many companies are tackling the issues of integrating their work on new tech into present standards and workflows. Sounds like Organovo’s work on pre-clinical bioprinting is finally getting there, Oas are standards for AM enabled medical. Other times industrialization doesnt need to be so complicated: IIoT allows smaller, incremental steps to be taken to integrate new tech and practices to benefit businesses.

Let’s dig in.

Organovo 3D bioprinted liver tissue could make it to the FDA by 2019

Organovo demonstrate toxicity testing with ExVive liver product. Image via Organovo

Speculation on 3D printed tissue coming to humans sooner than we think is backed by new pre-clinical findings from 3D bioprinting company Organovo. Though it will still be 3–5 years before the U.S. based Organovo apply for clearance of their liver tissue, that is still sooner than perhaps even the FDA had in mind. Pre-clinical trial data shows that 3D bioprinted liver tissue has been successfully planted into lab-bred mice. The human liver-cell tissue shows regular functionality and, at this stage, is being explored as a suitable patch for the organ.

Read more at 3D Printing Industry.

3D Printing Production Medical Devices — Pitfalls And Best Practices

In May 2016, the FDA released a draft guidance titled Technical Considerations for Additive Manufactured Devices. Any manufacturer or organization considering 3D-printed components during the development of a medical device should refer to this document. The guidance goes into detail regarding risk and other considerations related to 3D printing, as well as how to employ 3D printing within device development.

Read the article here and the FDA guidance here.

Use Existing Data to Optimize IIoT Sensor Deployment

It is hard to know where to start [in IIoT], and whether the solution being designed will be palatable to the end customer in terms of function and price. Rather than ordering highly marketed solutions from outside the enterprise and “tipping” consultants with exorbitant fees, they can find ingredients that are already on hand, apply basic analytics, and come up with some surprisingly tasty ways to translate raw data into process information to improve maintenance or business decisions.

Read about the useful, and easy, ways IIoT can easily be integrated in your business here.

 

We hope to see you next week for another edition brought to you by Authentise!