Space, the final frontier will need 3D printing to make it happen (Authentise Weekly News-In-Review – Week 83)

The space industry finds itself in the sweet spot of many advanced technologies, hoping to improve mission success by looking at its problems from all sides. 3D printing has already proved to be a powerful tool for these purposes, with its fast iterative cycles and outside-the-box manufacturing paradigm. What Airbus has been doing for its airplanes, Lockheed Martin is pushing beyond with 3D printed parts that can reach sizes just under 4ft, halving production time, costs and reducing weight. Still, it will be extremely expensive to launch humans to Mars or even the Moon in the near future. For that, we’ll have to rely on robots (with much lower maintenance requirements). By sending autonomous robots to another planet, they can be tasked to 3D print sustainable habitats for us in-situ, by sourcing local materials. Empowered by the digital thread, the designs for these habs can be experimented upon and reiterated, and contests are being created periodically to further improve those that, in a not too distant tomorrow, we could call homes.

 

Lockheed Martin 3D printed an impressive titanium dome for satellite fuel tanks

Lockheed Martin has just taken 3D printing to new heights, printing an enormous titanium dome meant for satellite fuel tanks. It’s the largest space part the company has 3D printed to date and measures 46inch  in diameter — just under 4ft.

“Our largest 3D printed parts to date show we’re committed to a future where we produce satellites twice as fast and at half the cost,” said Rick Ambrose, Lockheed Martin Space executive vice president. “And we’re pushing forward for even better results. For example, we shaved off 87% of the schedule to build the domes, reducing the total delivery timeline from two years to three months.”

Read the full article on Digital Trends.

 

Here’s What We Know About The Robots That Might Build Our First Homes on the Moon

Rovers may soon traverse the surface of the Moon yet again. This time, though, they’ll have one noble mission: to build shelter the first human colonizers will inhabit. A team of Japanese scientists is working to make this a reality. They started a company called ispace with the intention of launching a private space mission to the Moon. ispace envisions an entire colony, called “Moon Valley”, constructed not by human astronauts, but by robots instead. And they want to get started on it soon: the team is planning its first mission for late 2019, and a second in 2020.

Read the full article on Futurism.

 

NASA announces winners of competition to design 3D-printed habitat for Mars

NASA announces winners of competition to design 3D-printed habitat for Mars

NASA has selected the five winning designs in the latest stage of its 3D-printed Habitat competition, which include a community of modular pods made from the Martian surface, and a vertical egg-like container. The On-Site Habitat Competition invited groups to design a sustainable shelter for a crew of four astronauts on a mission to Mars, using construction techniques enabled by 3D printing technology.

Read the rest here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Traditional design processes don’t work with AM, so it’s changing (Authentise Weekly News-In-Review – Week 81)

We’ve set up our design process to be efficient and reliable for the tools at our disposal, and with 3D printing, it’s about time to shake it up. 3D printing is inherently different from traditional manufacturing techniques and, to explore its true potential, we need to rely on design tools that help us explore new directions. Sandia Labs argues that this technology doesn’t plug easily into established production methodologies, both in terms of speed and how the variables involved impact the parts. The different features of a 3D printed part are a challenge for precision manufacturing lines. Apart from industrial compatibility issues, to see where we can push 3D printing we need to think outside the box. Concepts like 4D manufacturing help us envision what we can achieve with the technology, with parts that react to temperature, light or mechanical changes. This is nothing new in and of itself, but it’s been explored through 3D printing and it’s empowered design capabilities. We are already on the right track to reinvent the design process through smart digital tools, like generative design and quick iterative cycles, and the future looks exciting.

Sandia Labs Focused on Optimizing Design for 3D Printing

3D printing is capable of streamlining both design and production processes, but most designers (and many design tools) aren’t really prepared to take advantage of the design possibilities the technology presents. Traditional design methods applied to additive manufacturing don’t necessarily lead to fully optimized designs. Sandia National Laboratories’ Laboratory Directed Research and Development project hopes to point the industry in the right direction.

According to Sandia, the project focused on “how to put less precise 3D printed parts together with precise tools, taking advantage of the rapid prototyping, design and manufacturing possible with additive manufacturing.”

Read the full article here.

MIT engineers create 3D-printed magnetic shape-shifters

Engineers from MIT have designed soft, 3D-printed structures that can transform their shape “almost instantaneously” with the wave of a magnet. The magnetically manipulated objects are made using a type of 3D-printable ink developed by researchers at the Massachusetts Institute of Technology (MIT), which has been infused with tiny magnetic particles.

Read the rest here.

Autodesk University: How is Generative Design used Within Additive Manufacturing?

With a keenness to learn more about how design processes can affect AM end-production, 3D Printing Industry attended Autodesk University’s industrial talk entitled “Generative Design: Past, Present, and Future”. This lecture was led by Autodesk’s Principal Technical Consultant Andrew Harris and Allin Groom a Research Engineer at Autodesk.

Read more at 3D Printing Industry.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Is 3D printing reinventing the automotive assembly line? (Authentise Weekly News-In-Review – Week 78)

Henry Ford was the first to envision a streamlined way of bringing quality automobiles to market. The idea behind his revolutionary vision was that technology enabled his workers to optimize their activities. That philosophy is still alive and well in the automotive industry and now, thanks to 3D printing, it’s experiencing a renewed sense of discovery. Currently, companies like Audi and GM are employing 3D printing to help speed up the design and prototyping cycle cutting lead times by more than 50% and saving over $300K on tooling. The bravest (or those with the most resources) are pushing 3D printing towards new applications and wild concepts for the cars of the future.

General Motors Saves $300,000 By Switching To 3D Printed Tooling

Zane Meike holds sample 3D printed tool at the Lansing Delta Township assembly plant in Michigan. Photo by Michael Wayland/Automotive News

The Lansing Delta Township assembly plant of American multinational vehicle manufacturer General Motors has reported an expected cost saving of over $300,000 since it acquired a 3D printer three years ago. Driving forward its 3D printing efforts, the plant eventually expects to create annual cost savings in the millions of dollars.

Read the full article here.

Shanghai Commits To Divergent 3D Printed Electric Vehicle Production

The Divergent 3D node-based additive manufacturing technology, used to make the Blade supercar, is to be the driver of a new electric vehicle (EV) production plant in Shanghai.

“The EV market in China is at an inflection point, with unparalleled growth in demand and government policy stimulus,” says Eric Ho King-fung, chairman of We Solutions in an article for the South China Morning Post.

Check out the rest of the article here.

MIT’s 3D-printed inflatables could shape the interiors of cars in the future

Car interiors could morph into different configurations at the flick of a switch, using 3D-printed inflatable structures developed by researchers at the MIT. The Self-Assembly Lab at MIT worked with BMW on the project, called Liquid Printed Pneumatics. The result is a stretchy, inflatable silicone prototype that can take on a number of different shapes depending on the level of air pressure inside. If turned into a car seat, it could quickly be tuned to different positions, or levels of springiness depending on user preference.

Read the rest at Dezeen.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Evolving Scene of Metal AM (Authentise Weekly News-In-Review – Week 15)

This week was chock-full of news related to metal AM. The global scene is intensely researching the potential of metal AM and competitiveness is growing in all its aspects: metal powder production, CAD optimization, manufacturing method and much more. This week we saw exposed not one, but two new methods of metal AM! LLNL and the University of Sheffield both came out with novel techniques to produce produce metal objects additively and they both have their own unique benefits, being that increased speed or greater reliability. All the while we are making strides in understanding the complex physics involved in metal sintering processes: greater knowledge and improved optimization software is also crucial to manufacture metal parts reliably and efficiently.

 

Lawrence Livermore National Laboratory announces new metal 3D printing method

US federal research facility, Lawrence Livermore National Laboratory (LLNL) has announced the results of an ongoing three-year research project into direct metal 3D printing. The technology, referred to as ‘Direct Metal Writing’ (DMW) adds to existing metal additive solutions such as selective laser melting (SLM). […] The new approach uses semi-solid metal feed material, beginning with a heated ingot or small block of metal. Once heated to a semi-solid state, the metal is then pushed through the extruder in a paste-like consistency. The material is shear thinning, which means it forms as a solid when left to rest and acts more like a viscous liquid when in motion or when applied with force.

Read more about DMW here.

Significant Speed Up For 3D Metal Printing Developed

Researchers at the University of Sheffield have developed a unique 3D metal printing process that could dramatically speed up metal printing. […] they call “Diode Area Melting”, or “DAM”. Instead of a single (or small number of) lasers, the DAM approach involves using an array of low power laser diode emitters. These emitters are not directed to the powder by an arrangement of mirrors, but instead are positioned above the powder surface and apply their energy directly.

Read more about DAM right here.

Challenges in modeling and simulation for metal additive manufacturing

Commercial acceptance of AM for exacting applications still faces a technical challenge caused by the limited understanding of physical phenomena in the melt pool. Real-time observation of this physical phenomena is difficult since AM melt pools are inherently transient and involve complex physical interactions between energy beam-powder substrate. Moreover, the real-time measurements of thermal and fluid variables can typically be made only on the surface of the melt pool. In contrast, a numerical simulation of mass, momentum, and energy transfer in melt pools can provide approximation of the melt pool shape and some useful 3D fields such as the distributions of temperature, flow velocities, solidification temperature gradient and solidification rate. Ultimately, an understanding of the relationships between processing, structure, properties and performance is essential.

Check out both parts of the article, here and here.

 

There is more where all these came from so don’t forget to follow us on Twitter for daily doses of AM news! And, as always, we hope to see you back next week!