AM for production is already here (Authentise Weekly News-In-Review – #119)

Production level AM seems a far cry for many in the manufacturing industry. However, we have many examples of how businesses are starting to put the technology to work on the factory floor. Leading the march is the aviation industry, with companies like Airbus 3D printing thousands of aircraft components today, shaving off weight and increasing reliability. Right up second is automotive, with companies like Bugatti and GM redesigning car parts through AM, and putting them in cars roaming the streets today. Also, the footwear industry has been keen to adopt AM as both a marketing strategy and a serious production boon. Improved customization and agility got the attention of companies like Nike, Adidas and Under Armour, creating both limited editions and mass-produced soles and shoe components.

 

Premium AEROTEC 3D Printing Serially Produced Parts For All Airbus A350 XWB Aircraft

A few years ago Airbus said that it would have over a 1000 3D printed components on each aircraft. Subsidiary Airbus Helicopters has for a few months now been serially producing metal door latch shafts for the A350. Now Premium Aerotec, itself also an Airbus subsidiary, will start serially producing metal 3D printed components for the A350 as well. These have now entered into serial production and have been delivered to Airbus.

Read the full article here.

 

Bugatti champions 3D-printed parts

The Divo supercar, with its $5.8 million starting price, was one of the stars of last summer’s Monterey Car Week. It achieved a 77-pound weight reduction from the Bugatti Chiron on which it is based, with some coming from more precisely made 3D printed taillights. Last year, it revealed that it has worked with tech suppliers Bionic Production and Fraunhofer IAPT to develop an eight-piston, titanium monobloc brake caliper via 3D printing. Bugatti says that part is being prepared for series production.

Read the rest here.

 

Five footwear industry leaders using 3D printing for production today

adidas concept shoe

Leading footwear AM companies – Adidas, Nike, Under Armour, New Balance, and Reebok – are targeting different footwear final parts and products, relying on different technologies and materials. However, there are some common trends which are based on the overall macro trend of advanced manufacturing: mass customization and digital mass production.

Read the full analysis at 3D Printing Media Network.

 

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

How to overcome AM’s limitations (Authentise Weekly News-In-Review – Week 41)

We’ve heard so much buzz about how AM is poised to be the end-all be-all manufacturing technology. Alas, there are many things that it still can’t quite achieve and that is where we take a step back and either make do with what we have or invent our way into the unexplored. For example, very small-scale 3D printing is not yet deemed at high enough resolution for certain medical applications and doesn’t allow for the level of manufacturing flexibility it would require: that’s when MIT designed a new layer-based manufacturing method capable of overcoming AM’s shortcomings. Some other times it’s just a matter of resources, where AM is the pricier alternative, albeit unmatched in some cases. Arup has shown that AM can become a facilitator of older techniques like casting, providing complex shapes in the form of sand molds, chopping away at the expenses of direct metal printing. Likewise, hybrid manufacturing is giving businesses the flexibility to choose the most beneficial production method depending on the design and final use. More and more we are seeing the rise of big manufacturing power-machines, like the latest Fraunhofer/CMS 5 axis brainchild.

 

3D Fabrication Technique Allows for Multiple Vaccinations in Single Injection

Researchers from the Massachusetts Institute of Technology are developing a 3D fabrication technique that would allow multiple doses of a drug or vaccine to be delivered to a patient over an extended period of time. According to research scientist Ana Jaklenec, they were unable to create these structures using current 3D printing methods. Instead, the team used a new method called SEAL (StampEd Assembly of polymer Layers).

Check out the full article at All3DP.

 

Arup Develops Affordable 3D-Printing Sand Casts for Complex Steel Structural Elements

Arup Develops Affordable 3D-Printing Sand Casts for Complex Steel Structural Elements, © Davidfotografie

Working with the Anglo-Dutch company 3DealiseArup 3D-printed sand molds are used in the traditional casting process to create sophisticated, unique structural steel nodes as a certified material. Sand printing offers a quick technique that can reuse the materials and allows costs to be kept low.

Keep reading at Archdaily.

 

Fraunhofer IWU And CMD Partner To Make Mega 5 Axis 3D Printer Hybrid

3D Kreator concept. Image via Aerospace Manufacturing Magazine

The Fraunhofer Institute for Machine Tools and Forming Technology (Fraunhofer IWU) in Chemnitz, Germany, has entered into a partnership with Italian machine center makers CMS to research and develop a new hybrid CNC milling 3D printer. Operating beyond the bounds of typical XYZ directional 3D printers, the named CMS Kreator is capable of tool paths across 5 axis, bringing more freedom to the possibilities of FDM.

Read the full article here.

 

If you wish to be kept updated on a daily basis on movements in the AM/IIoT world check out Twitter feed!

Week in Review: September 19th to 26th – AM Materials’ Expansion

Hello, welcome to another week in review brought to you by Authentise.

This week got a lot of buzz going for breakthroughs and materials bringing excitement to the world of AM: we got 3D printed cemented carbide tools courtesy of Fraunhofer Institute for Ceramic Technologies’ (IKTS) new binderjetting technique, bioengineered plastic spitting bacteria to supply future space missions and a whopping AM breakthrough in flexible thermoelectric devices which promises plummeting prices for coming IoT clothing and more.

Let us begin.

 

Fraunhofer IKTS develops 3D printed carbide tools with adjustable mechanical properties

Fraunhofer IKTS will present 3D printed cemented carbide (hard metal) tools at the World PM2016 Congress & Exhibition… IKTS scientists used a binder jetting 3D printing method to produce the tools. According to the researchers, these 3D printed tools are of comparable quality to those produced using conventional methods, and can be made into more complex shapes.

Read the full article here.

 

Bioengineered bacteria could be used to 3D print food and tools on Mars

cosmocrops d printing best picture the martian

A Danish research team is working on a synthetic biology project called CosmoCrops, which hopes to use bacteria to make it possible to 3D print everything needed for a respectable space mission, using a cutting-edge co-culturing system. To this end, the team has designed a special kind of bioreactor and has bioengineered bacteria that can be used to produce the necessary 3D-printing materials.

Read more at Digital Trend.

 

Nano Dimension paves way for wearables by 3D printing conductive patterns onto fabric

Israeli PCB 3D printing pioneer Nano Dimension has just successfully 3D printed conductive patterns made from silver nanoparticles onto specially treated fabric. This achievement, realized in collaboration with an unnamed leading European functional textiles company, paves the way for sensors and electronics that are actually part of your clothing. It proves that even functional and ‘smart’ fabrics, packed with sensors, are realistic possibilities and do not need to be limited by movement, folding or wearing.

Read the full article here.

 

Research explores thermoelectric screen printing

In work led by professor Yanliang Zhang at Boise State University, high-performance and low-cost flexible thermoelectric films and devices were fabricated by an innovative screen-printing process that allows for direct conversion of nanocrystals into flexible thermoelectric devices. Based on initial cost analysis, the screen-printed films can realize thermoelectric devices at 2-3 cents per watt, an order of magnitude lower than current state-of-the-art commercial devices.

Read more about the breakthrough at ScienceDaily.

 

Subscribe to our mailing list

* indicates required




Also receive our weekly News-in-Review?