Traditional design processes don’t work with AM, so it’s changing (Authentise Weekly News-In-Review – Week 81)

We’ve set up our design process to be efficient and reliable for the tools at our disposal, and with 3D printing, it’s about time to shake it up. 3D printing is inherently different from traditional manufacturing techniques and, to explore its true potential, we need to rely on design tools that help us explore new directions. Sandia Labs argues that this technology doesn’t plug easily into established production methodologies, both in terms of speed and how the variables involved impact the parts. The different features of a 3D printed part are a challenge for precision manufacturing lines. Apart from industrial compatibility issues, to see where we can push 3D printing we need to think outside the box. Concepts like 4D manufacturing help us envision what we can achieve with the technology, with parts that react to temperature, light or mechanical changes. This is nothing new in and of itself, but it’s been explored through 3D printing and it’s empowered design capabilities. We are already on the right track to reinvent the design process through smart digital tools, like generative design and quick iterative cycles, and the future looks exciting.

Sandia Labs Focused on Optimizing Design for 3D Printing

3D printing is capable of streamlining both design and production processes, but most designers (and many design tools) aren’t really prepared to take advantage of the design possibilities the technology presents. Traditional design methods applied to additive manufacturing don’t necessarily lead to fully optimized designs. Sandia National Laboratories’ Laboratory Directed Research and Development project hopes to point the industry in the right direction.

According to Sandia, the project focused on “how to put less precise 3D printed parts together with precise tools, taking advantage of the rapid prototyping, design and manufacturing possible with additive manufacturing.”

Read the full article here.

MIT engineers create 3D-printed magnetic shape-shifters

Engineers from MIT have designed soft, 3D-printed structures that can transform their shape “almost instantaneously” with the wave of a magnet. The magnetically manipulated objects are made using a type of 3D-printable ink developed by researchers at the Massachusetts Institute of Technology (MIT), which has been infused with tiny magnetic particles.

Read the rest here.

Autodesk University: How is Generative Design used Within Additive Manufacturing?

With a keenness to learn more about how design processes can affect AM end-production, 3D Printing Industry attended Autodesk University’s industrial talk entitled “Generative Design: Past, Present, and Future”. This lecture was led by Autodesk’s Principal Technical Consultant Andrew Harris and Allin Groom a Research Engineer at Autodesk.

Read more at 3D Printing Industry.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

3D Printing is helping reinvent robots (Authentise Weekly News-In-Review – Week 77)

3D printing is helping many industries find new effective ways of going about their business. In robotics, this was particularly apparent, mostly due to the still very early nature of the field. The research environment is more flexible and open to disruption and this has led to some pretty amazing applications. Through generative design CAD techniques, Boston Dynamics robots got a substantial weight-cut and simplified the overall design, much like Airbus is doing with its airplane cabin parts. Thanks to its manufacturing flexibility and quick iteration times, 3D printing is enabling wild prototying ideas, like new soft robotic grippers, and aiding students in not only putting robotics within reach but to be able to innovate on practically the same level as any other company.

A Morning Jog With Boston Dynamic’s 3D Printing Powered Atlas Robot

Structure of the Atlas' legs. Image via Boston Dynamics

Despite the feeling for this extremely realistic robot, [Boston Dynamic’sAtlas is undeniably a feat of modern engineering, in many parts enabled by 3D printing. To be expected, the legs responsible for Atlas’ convincing agility have been cited as one of the most challenging parts of its development. Each leg is actuated by hydraulic power, requiring the internal integration of multiple channels and actuator cylinders into a single part – a task that has been overcome with the use of 3D printing.

Read the full coverage on 3D Printing Industry.

Silicone material enables the 3D printing of soft robotic grippers

3d printing of soft robotic grippers

The ACEO team from Wacher Chemie AG chose 3D printing for its soft robotic grippers because this technology lets designers customize the grippers into varying sizes, shapes and weights. The elastomer material is made from 100% silicone and can be used in food applications and also offers biocompatibility.

Check out the full article here.

Rize One 3D Printer Helps Students Reach Success in Robotics Competition

FRC Team 1257 was part of a challenge that was called FIRST Power Up, which asked students to build robots that placed boxes on scales. As part of the challenge, the team designed a functional pulley with an integrated sprocket and used a Rize One 3D printer to 3D print it in one piece, reducing the number of parts that would have otherwise been needed and minimizing the assembly required.

“We chose the Rize One 3D printer to print the part due to Rize’s isotropic part strength and ink marking capability,” said Jackie Gerstein, a technology teacher at UCMHS and faculty advisor and mentor to Team 1257.

Read the article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

New design thinking is helping AM reach new heights (Authentise Weekly News-In-Review – Week 75)

AM is a fantastic piece of technology, but sometimes it can only go as far as the design behind it. That’s why, following the rise and promise of 3D printing techniques, new ways of designing by means of CAD and reasoning have been born, and they help boost the capabilities of AM in a number of ways. Take General Motors for example: through a technique called generative design, they are able to procedurally build the volume of a part to better address its functions and operational stresses, while at the same time saving precious weight. In other cases, new materials and design possibilities come together to enable unprecedented applications like, for example, a customized inflatable for future car interiors. With this kind of thinking, we start to see how this new wave of design methodologies is enabling AM processes to actually work. The 3D printed bridges and houses that we often hear about wouldn’t be much of a revolution by 3D printing alone, if not for a smart and optimized design that can make it work and excel.

GM and Autodesk Using Additive Manufacturing for Lighter Vehicles

GM is using Autodesk’s generative design technology and additive manufacturing to fabricate lighter automotive parts; this seat bracket is 40% lighter and 20% stronger than its predecessor. […] It uses cloud computing and AI-based algorithms to rapidly explore multiple permutations of a part design; it can generate hundreds of high-performance, often organic-looking geometric design options based on goals and parameters set by the user.

Read the full article here.

MIT’s 3D-printed inflatables could shape the interiors of cars in the future

Car interiors could morph into different configurations at the flick of a switch, using 3D-printed inflatable structures developed by researchers at the MIT. The Self-Assembly Lab at Massachusetts Institute of Technology (MIT) worked with BMW on the project, called Liquid Printed Pneumatics. The German auto brand wanted to see how the lab’s experimental engineering techniques could help it realize some of the shapeshifting features imagined in its futuristic concept cars.

Keep reading at Dezeen.

Additive Construction: From the 3D-Printed House to the 3D-Printed High-Rise

AM has begun to affect nearly every industry, from healthcare to aerospace, making it possible to create unique geometries with unique properties. One industry where 3D printing’s impact is at an even more nascent stage in construction. There are firms and research groups exploring the use of 3D printing as a building technology, but additive construction is still so young that its exact purpose and benefits remain speculative and unclear. Why, other than for sheer novelty, squeeze concrete out of a nozzle to fabricate a building when you can rely on traditional methods?

Read the full article here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!