New design thinking is helping AM reach new heights (Authentise Weekly News-In-Review – Week 75)

AM is a fantastic piece of technology, but sometimes it can only go as far as the design behind it. That’s why, following the rise and promise of 3D printing techniques, new ways of designing by means of CAD and reasoning have been born, and they help boost the capabilities of AM in a number of ways. Take General Motors for example: through a technique called generative design, they are able to procedurally build the volume of a part to better address its functions and operational stresses, while at the same time saving precious weight. In other cases, new materials and design possibilities come together to enable unprecedented applications like, for example, a customized inflatable for future car interiors. With this kind of thinking, we start to see how this new wave of design methodologies is enabling AM processes to actually work. The 3D printed bridges and houses that we often hear about wouldn’t be much of a revolution by 3D printing alone, if not for a smart and optimized design that can make it work and excel.

GM and Autodesk Using Additive Manufacturing for Lighter Vehicles

GM is using Autodesk’s generative design technology and additive manufacturing to fabricate lighter automotive parts; this seat bracket is 40% lighter and 20% stronger than its predecessor. […] It uses cloud computing and AI-based algorithms to rapidly explore multiple permutations of a part design; it can generate hundreds of high-performance, often organic-looking geometric design options based on goals and parameters set by the user.

Read the full article here.

MIT’s 3D-printed inflatables could shape the interiors of cars in the future

Car interiors could morph into different configurations at the flick of a switch, using 3D-printed inflatable structures developed by researchers at the MIT. The Self-Assembly Lab at Massachusetts Institute of Technology (MIT) worked with BMW on the project, called Liquid Printed Pneumatics. The German auto brand wanted to see how the lab’s experimental engineering techniques could help it realize some of the shapeshifting features imagined in its futuristic concept cars.

Keep reading at Dezeen.

Additive Construction: From the 3D-Printed House to the 3D-Printed High-Rise

AM has begun to affect nearly every industry, from healthcare to aerospace, making it possible to create unique geometries with unique properties. One industry where 3D printing’s impact is at an even more nascent stage in construction. There are firms and research groups exploring the use of 3D printing as a building technology, but additive construction is still so young that its exact purpose and benefits remain speculative and unclear. Why, other than for sheer novelty, squeeze concrete out of a nozzle to fabricate a building when you can rely on traditional methods?

Read the full article here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

3D printing & the environment: promises and limitations of AM (Authentise Weekly News-In-Review – Week 39)

There are a lot of manufacturing dynamics which 3D printing is upending. It goes beyond design freedom, AM technologies allow us to be a lot more conscious of our footprint on the environment. We are still testing new grounds and so far AM is revealing to be a less wasteful, smarter approach to manufacturing. Not only can we build structures that utilize the barest minimum in terms of material usage, entirely new materials and techniques allow us to tackle the problems of biodegradability and energy consumption. Nonetheless, AM still has a way to go before it can get to the level of manufacturing performance of traditional methods. Laser sintering still requires a great deal of electricity to fuse metal particles, most processes are imprecise by traditional standards and most groundbreaking AM applications are still very much R&D. This point reinforces the fact that AM should cover its role in a broader hybrid manufacturing system, in which the optimal outcome in terms of manufacturing footprint and item accuracy can be achieved. There is no holy grail solution in manufacturing, just an ever expanding toolset to give you the right means to get optimal ends.

3D Printhuset Lays Foundations For 3D Printed Office-Hotel in Copenhagen

A rendering of the finished BOD. Image via: 3D Printhuset.

Building on Demand (BOD), the latest venture of Danish firm 3D Printhuset, marks a major breakthrough for additive manufacturing in construction. The concrete office-hotel structure, occupying just under 50m of floor-space, is due to be 3D printed in Nordhaven, Copenhagen’s docklands area, and will be Western Europe’s first inhabitable 3D printed buildingJakob Jørgensen, Technical Manager at 3D Printhuset, explained in a press release that 3D printing the building over traditional construction meant that “complex forms can be entered at no additional cost”, while Michael Holm, the company’s development manager, emphasized the use of up-cycling and waste reduction in building materials.

Read the full article here.

3D Printed Biomaterials Degrade on Demand

Researchers 3D-printed intricate temporary microstructures that can be degraded on demand using a biocompatible chemical trigger. (Credit: Wong Lab / Brown University)

Biomaterials that can degrade on demand have been 3D printed by engineers at Brown University. The materials were fabricated by means of stereolithographic printing […]. The capacity of the materials to degrade is imparted by the development of reversible ionic bonds. Precursor solutions were prepared with sodium alginate, a compound derived from seaweed that is known to be capable of ionic crosslinking. Different combinations of ionic salts, including magnesium, barium and calcium, were then added to 3D print objects with varying stiffness levels, a factor which affected how quickly the structures dissolved.

“The idea is that the attachments between polymers should come apart when the ions are removed, which we can do by adding a chelating agent that grabs all the ions,” said assistant professor Ian Wong. “This way we can pattern transient structures that dissolve away when we want them to.”

Read the full at IEEE.

Research Breakthrough: Cold Sintering

Researchers in Penn State’s Materials Research Institute, led by Clive Randall, recently discovered a process that could revolutionize the manufacturing industry. Known as cold sintering, the process could be used for developing materials we use every day, such as bricks and glass, at a much lower energy cost than the process used today. The researchers have shown their new process can be used to make at least 50 materials, and they are continuing to expand their research to incorporate additional materials.

 

If you wish to be kept updated on a daily basis on movements in the AM/IIoT world check out Twitter feed!