3D Printing is helping reinvent robots (Authentise Weekly News-In-Review – Week 77)

3D printing is helping many industries find new effective ways of going about their business. In robotics, this was particularly apparent, mostly due to the still very early nature of the field. The research environment is more flexible and open to disruption and this has led to some pretty amazing applications. Through generative design CAD techniques, Boston Dynamics robots got a substantial weight-cut and simplified the overall design, much like Airbus is doing with its airplane cabin parts. Thanks to its manufacturing flexibility and quick iteration times, 3D printing is enabling wild prototying ideas, like new soft robotic grippers, and aiding students in not only putting robotics within reach but to be able to innovate on practically the same level as any other company.

A Morning Jog With Boston Dynamic’s 3D Printing Powered Atlas Robot

Structure of the Atlas' legs. Image via Boston Dynamics

Despite the feeling for this extremely realistic robot, [Boston Dynamic’sAtlas is undeniably a feat of modern engineering, in many parts enabled by 3D printing. To be expected, the legs responsible for Atlas’ convincing agility have been cited as one of the most challenging parts of its development. Each leg is actuated by hydraulic power, requiring the internal integration of multiple channels and actuator cylinders into a single part – a task that has been overcome with the use of 3D printing.

Read the full coverage on 3D Printing Industry.

Silicone material enables the 3D printing of soft robotic grippers

3d printing of soft robotic grippers

The ACEO team from Wacher Chemie AG chose 3D printing for its soft robotic grippers because this technology lets designers customize the grippers into varying sizes, shapes and weights. The elastomer material is made from 100% silicone and can be used in food applications and also offers biocompatibility.

Check out the full article here.

Rize One 3D Printer Helps Students Reach Success in Robotics Competition

FRC Team 1257 was part of a challenge that was called FIRST Power Up, which asked students to build robots that placed boxes on scales. As part of the challenge, the team designed a functional pulley with an integrated sprocket and used a Rize One 3D printer to 3D print it in one piece, reducing the number of parts that would have otherwise been needed and minimizing the assembly required.

“We chose the Rize One 3D printer to print the part due to Rize’s isotropic part strength and ink marking capability,” said Jackie Gerstein, a technology teacher at UCMHS and faculty advisor and mentor to Team 1257.

Read the article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Safety and reliability of metal AM parts (Authentise Weekly News-In-Review – Week 60)

3D printed metal parts are already being employed in very real world situations, from aircraft engine parts to wind turbines. In order to be applicable for these high stress scenarios, metal parts need to comply with very stringent performance standards. 3D printed brakes have been deemed suitable for a Bugatti Chiron, the most powerful super car in the company’s history. You can bet they’ve made their homework prior to putting their whole line of $3M cars on the line. Hydraulic parts manufacturers are utilizing AM to produce components faster and more efficiently than ever before, capable maintaining peak performance in highly pressurized applications. The research is still ongoing, especially in the material sciences. Scientists at the University of Kassel have been able to use AM with a particularly strong steel alloy, which will greatly enhance the safety and reliability of metal parts.

SLM Solutions Metal 3D Printing Brakes The Most Powerful Car In Bugatti History

Bugatti's

[…] 3D printing is implemented for next generation development of the Bugatti Chiron – a car with a price tag close to $3 million. Measuring 41 cm x 21 cm x 13.6 cm (L x W x H) the part claims, by volume, to be “the largest functional component” 3D printed out of titanium. It is also 2 kg lighter than its 4.9 kg machined aluminum counterpart.

“Technically, this is an extremely impressive brake caliper, and it also looks great.” – Frank Götzke, Head of New Technologies in Technical Development at Bugatti Automobiles S.A.S.

Read the full story here.

Aidro Uses Metal 3D Printing to Improve Hydraulic Components

Aidro was founded in 1982 by hydraulics engineer Paolo Tirelli. Today, they use metal 3D printing for making custom designs with complex geometries, lightweight parts, and rapid prototyping.

“With good design methods, we can 3D print a hydraulic manifold that can withstand pressure peaks in the system without any problems,” says Alberto Tacconelli, Managing Director. “We can increase the wall thickness and change the shapes of the channels where the FEM analysis indicates a potential failure.”

Read about in-depth examples at 3DPrint.

EBM 3D Printing Process Used to Process a Steel Alloy with High Damage Tolerance

For the first time, a research team at the University of Kassel in Germany has used additive manufacturing to process a steel alloy with extremely high damage tolerance, which will help in promoting safety and reliability of 3D printed metal parts. […] This type of alloy, thanks to its special deformation mechanisms, holds up very well, and the heat from the EBM process helps to avoid any unpredictable material properties, resulting in a significantly better inner material structure that protects against possible damage.

Read more about it here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!