AM, bringing In-Situ manufacturing to a facility near you! (Authentise Weekly News-In-Review – Week 24)

In the comfort of our daily lives, we often take for granted some of the services and perks of our industrious world. We are getting really good at managing the complex scenarios of a global economy where any kind of goods must be shipped and handled efficiently but, still, it’s driving a decisive cost factor in every business. Logistics is inherently complicated but, with AM decentralizing manufacturing capabilities, this is about to change, drastically. In-situ manufacturing is a game-changer in a wide variety of cases. Bespoke replacement parts, like Daimler is doing with its buses, can be produced as needed, driving down storage and production expenses. The Australian DOD is developing a program to deploy 3D printing on the front lines, vastly improving the base’s flexibility in addressing its needs. It goes as far as the ISS, where astronauts will 3D print habitat’s radiation shields through it’s on-board AM device, saving millions on resupply launches.

Daimler Buses implements 3D printing to produce bespoke Mercedes-Benz parts

Daimler Buses, parent company of Mercedes-Benz and Setra, has explained how it is implementing 3D printing to create components for its customers on-demand. Providing the example of a banknote stowage compartment, Daimler has showcased how it is utilizing the technology to create bespoke parts. According to Daimler, the company has so far 3D printed 780 components with over 150 replacement parts currently undergoing validation.

Hartmut Schick, Head of Daimler Buses, explains how 3D printing is advancing production of spare parts at the company,

The 3D printing process allows us to install local printers at the production plants operated by Daimler Buses worldwide. It also enables us to respond in a flexible manner at local level to customers’ special wishes and replacement part needs.

Read the full article at 3D Printing Industry.

Australian Department of Defence develops 3D printing programme for fixing frontline aircraft

A jet in the Australian Airforce. Photo via @DeptDefence on Twitter

The Defence Science and Technology Group (DST Group) of the Australian Department of Defence (DoD) has developed a 3D printing programme for fixing and strengthening aircraft parts. The technology is used in response to craft on the frontline of defence therefore, according to national security intelligence site Jane’s 360“boosting the operational ability of military aerospace platforms.” 

Defence researcher, Kevin Walker, explains,

Repairing existing parts (as opposed to manufacturing new parts) is often a more cost effective and efficient way of keeping military aircraft in the air. In conjunction with RMIT and industry partners, we have developed laser-based additive manufacturing repairs that can remediate faults such as corrosion, wear and fatigue cracking.

Read the full article here.

ISS Bigelow Expandable Activity Module gets 3D printed radiation shields after passing space debris tests

The Bigelow Expandable Activity Module (BEAM), a modular habitat attached to the International Space Station, has passed a first round of tests concerning its resistance to space debris. 3D printed radiation shields will now be added to the module for extra protection against cosmic rays […] printed on the International Space Station’s Made In Space Additive Manufacturing Facility (AMF) 3D printer. Researchers on the project concluded that 3D printed radiation shields were “affordable and optimal at all scales ranging from Cubesats to interplanetary manned missions.”

Read more about the ISS project here.

 

Check us out on Twitter! There you’ll find more than your usual News-In-Review, a recollection of AM & IIoT news and every update to Authentise services.

Enabling Research Through AM (Authentise Weekly News-In-Review – Week 01)

Hi everyone, welcome back to the new year with a more weekly 3D printing news from Authentise!

Through AM scientists are able to go where traditional manufacturing simply couldn’t take them. NASA is keeping up the pace for the entirely 3D printed rocket by testing more and more components up for the challenge, ROSCOSMOS is planning to add a bioprinter to the ISS’s arsenal and test it at microgravity and, while we’re at it, stem cell research is getting a boost from 3D printing’s ability to create cartilage’s structures.

Are you aching for your daily fix of science with a side of AM? Let’s dig in.

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

Recent tests of a developmental rocket engine at NASA‘s Marshall Space Flight Center in Huntsville, Alabama, produced all the performance data engineers were hoping for, along with the traditional fire and roar. But this engine is anything but traditional. Marshall engineers are designing each of the components from scratch to ultimately be made entirely by AM methods …The series of 12 test firings in late fall brought them a big step closer to that goal, said Andrew Hanks, test lead for the project. The fuel turbopump, fuel injector, valves and other major engine components used in the tests were 3D printed, with the exception of the main combustion chamber.

Read more of these test firings at NASA.

 

Russian space agency Roscosmos to 3D print living tissue on ISS

Russian scientists are planning to install and operate a 3D bioprinter aboard the ISS, according to an official source. They believe that microgravity conditions could actually improve the bioprinting process. […] They believe that significant progress in bioprinting can be achieved by placing equipment in microgravity conditions, since the lack of gravity could potentially help to keep deposited cells in place.

Read the full article here.

Scientists Are Creating New Ears With 3D-Printing and Human Stem Cells

BNWM3H.jpg

Inspired by the earmouse, doctors at the University of California at Los Angeles and the University of Edinburgh’s Centre for Regenerative Medicine have perfected a new technique to grow a fully formed human ear, using patients’ own stem cells. They begin with a 3D printed polymer mold of an ear, which is then implanted with stem cells drawn from fat. As these stem cells differentiate into cartilage, the polymer scaffold degrades, leaving a full “ear” made of mature cartilage cells. The new approach could “change all aspects of surgical care,” says Dr. Ken Stewart, one of the researchers and a plastic surgeon at the Royal Hospital for Sick Children.

Read the whole article at Smithsonian.

 

More next week