Medical AM: after the tried and true, here comes the weird (Authentise Weekly News-In-Review – #131)

The medical field is one of the largest adopters of AM technologies. However, it’s also one of the toughest to introduce new products into, due to high standards regulations. We’ve seen customized splints, hip replacements, surgical equipment, and doctors aren’t quite done yet. There are lots of commonplace medical items to analyze and redesign through AM like, for example, bespoke heart valves that could help deal with upcoming shortages. Now that AM has claimed its place within the medical toolset, more advanced and exotic applications are being explored with greater confidence. Breast implant reconstruction scaffolds printed with biocompatible materials all the way to swarms of drug-delivering micro-bots and bioprinting research. It’s been a long road to get here, but the doors are now more open than ever.

3D printing could meet rising demand for heart valves

artificial heart valves

If Swiss researchers have their way, artificial heart valves could simply come out of 3D printers in future. Switzerland’s Federal Institute of Technology (ETHZ), along with South African company Straight Access Technologies (SAT) has developed a silicone replacement for the heart valves used today. However, it will take at least ten years before the custom-made artificial heart valves can be used.

Read more at SWI.

This startup is 3D printing breast implants for cancer survivors

Lattice Medical showcases the intricate forms that can be 3Dprinted.

[Lattice Medical] creates 3D-printed breast implants which, unlike common silicone implants, dissolve into the body after a year. But the real magic is that in that time the company has a method for regrowing the natural breast tissue so that patients are ultimately left with natural breasts after just a single operation.

Keep reading on Sifted.

Georgia Tech Aims To Scale Micro 3D Printing And Produce Ant Robot Army

Georgia Tech's micro-bristle-bots, penny for scale. Photo via Georgia Tech

Barely visible to the human eye, a breed of microscopic 3D printed robots has been developed at Georgia Institute of Technology. Deemed “micro-bristle-bots” the devices can be be controlled by minute vibrations, making them capable of transporting materials, and detecting changes in the environment. Working together, like ants, the robots’ potential multiplies, unlocking a range of varied applications along the boundaries of mechanics, electronics, biology and physics. The Georgia Tech team is now looking at ways to scale-up the micro 3D printing method used to make the bots, and produce “hundreds or thousands” of the devices in a single build.

Read the full article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Small scale printing poised to make a big impact (Authentise Weekly News-In-Review – Week 102)

3D printing is usually making the news for big plane components or successful rocket tests. Unsurprisingly, there’s a world of small applications in which the technology can, and is, making an impact. Typical subtractive methodologies are pretty limited at the micro level: 3D printing brings customization and extremely high-precision to labs all over the world. Micro-scale printing is on the table mainly thanks to advancements in material sciences, with polymerization and astonishing “implosion fabrication” techniques. Still, it never hurts to have a hand from biological agents who can do the job for you and when it comes to bio-printing, it’s the way to go to obtain functional, “living” materials.

Microlight3D Offers a New Kind of Microscale 3D Printing

For 15 years, Patrice Baldeck and Michel Bouriau led intense research and development at the Université Grenoble Alpes. They were working on a two-photon polymerization 3D printing process that would become the basis of Microlight3D, founded in 2016. The process would be the first-ever non-additive two-photon polymerization direct laser writing technology. The benefits of the technology are many. It produces extremely high resolution and smooth surface finish comparable to injection molding. It also offers a great deal of design flexibility and eliminates the need for post-processing. It’s a fast technology that produces robust parts in any shape – 100 times smaller than a strand of hair.

Read the full article here.

New Shrinking 3D Printer

The idea behind the shrinking 3D printer is to print an object and then shrink it to the required size – a technique known as implosion fabrication. The most amazing part about this 3D printer is that it can be adapted to work with different materials like metals, quantum dots and even DNA. Additionally, complicated shapes like microscopic linked chains can be printed too. In multiple tests, the team found that they could shrink a structure by about 8000 times.

Read the rest at Forbes.

Creating Living Materials Using Bacteria and 3D Printing

In a paper entitled “Programmable and printable Bacillus subtilis biofilms as engineered living materials,” a team of researchers discusses how they used 3D printing to produce custom nanoscale biomaterials from the natural secretion of amyloid fibers from the bacteria Bacillus subtilis. The bacteria generate biofilms by secreting amyloid fibers via a tightly controlled cluster of genes called the tapA-sipW-tasA operon. The researchers were able to genetically modify the TasA protein and introduce functional chemical groups onto the TasA fibers excreted by the bacteria. This means that the bacterial films could be designed to act as functional living materials.

Read the full article here.

 

From the entire Authentise team, we wish you a very Merry Christmas!

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!