Monitoring 3D prints – more than just a business boost (Authentise Weekly News-In-Review – Week 94)

We at Authentise are champions of the idea that 3D printing data must be exploited anywhere it is to be found. This often times comes from the printers themselves, offering KPIs on successful print rates and more. Yet even more information can come from external monitoring systems, which that can provide you with data from within the process itself. The benefits of running a monitoring system are numerous, from helping you identify, and potentially correct, issues from within the process, to giving an unprecedented look at still little-known physical phenomenons. Metal printing, for example, is still grounds of research, as we try to understand the dynamics of precise powder melting and the behavior of very hot particles. Another example would be to track 3D printed objects, based on the unique printing “signature” of each printer (like vibrational micro-defects), and thus being able to tell which printer produced it.

High-Speed Cameras Used to Monitor 3D Printing Process

camera2

In a thesis entitled “Process Monitoring for Temporal-Spatial Modeling of Laser Powder Bed Fusion,” a student named Animek Shaurya studies the use of high-speed video cameras for in-situ monitoring of the 3D printing process of nickel alloy 625 to detect meltpool, splatter, and over melting regions to improve the quality of the print.

Read more at 3DPrint.com

New NIST method measures 3D polymer processing precisely

182682_web

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a novel light-based atomic force microscopy (AFM) technique–sample-coupled-resonance photorheology (SCRPR)–that measures how and where a material’s properties change in real time at the smallest scales during the curing process. […] Surprising the researchers, interest in the NIST technique has extended well beyond the initial 3D printing applications. Companies in the coatings, optics and additive manufacturing fields have reached out, and some are pursuing formal collaborations, NIST researchers say.

Read the rest here.

This is how researchers can now track 3D printed guns, weapons

screen-shot-2018-10-19-at-10-17-52

According to academics from the University of Buffalo, there is a way to use the ‘fingerprint’ of 3D printers to accurately trace items printed through the machinery, which may include counterfeit goods, guns, and other weaponry.  No in-fill patterns are the same, and this is the key to tracking down a specific printer.

“3D printers are built to be the same. But there are slight variations in their hardware created during the manufacturing process that leads to unique, inevitable and unchangeable patterns in every object they print,” says Wenyao Xu, Ph.D., associate professor of computer science and engineering in UB’s School of Engineering and Applied Sciences and lead author of the study.

Read the full article here.

 

Senvol Developing Machine Learning for US Navy for Additive Manufacturing

Screen Shot 2018-10-22 at 12.15.26 AM

Senvol has publicly announced that it is developing data-driven machine learning AM software for the U.S. Navy’s Office of Naval Research (ONR). Senvol’s software analyzes the relationships between AM process parameters and material performance. ONR’s goal is to use Senvol’s software to assist in developing statistically substantiated material properties in hopes of reducing conventional material characterization and testing that is needed to develop design allowables.

Read more here.

 

We’ll be at Formnext in Frankfurt from the 13th to 16th November. Come see us at booth #B30J.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

The Rise of Point of Use Manufacturing (Authentise Weekly News-In-Review – Week 66)

Additive manufacturing enables much more than design freedom and improved performance. It is one of the first technologies that is capable of bringing unparalleled production capabilities in a unified package. Through it, manufacturing doesn’t have to rely solely on factories: it can move from a centralized to a decentralized model. We have all the premises to enable point-of-use production to more nimbly address the requirements at a micro scale. There are a variety of cases that would greatly benefit from this added agility. Think a medical emergency which can’t wait for the logistics of tool manufacturing and handling from a 3rd party a great distance away. Having an AM hub near a disaster situation can help first responders address the situation quickly and efficiently. Already the US Navy is experimenting by including AM equipment on ships at sea, capable of autonomously print spare parts and tools, on-demand.

3D printing and the rise of point-of-care medical manufacturing

Chart courtesy SME

As a rule, the healthcare infrastructure doesn’t dabble in manufacturing, but that is changing in dramatic ways, and that transformation is enabled by 3D printing. A white paper published by SME (Dearborn, MI), a nonprofit organization promoting manufacturing technology, explains how point-of-care (POC) manufacturing is reducing healthcare costs while improving patient experience.

Read more about POC manufacturing here.

Plant Inspires 3D Printed Material for Cleaning Up Oil Spills

Salvinia molesta is a floating fern native to South America. Its leaves are extremely hydrophobic and retain a surrounding pocket of air when submerged in water, thanks to tiny water-resistant hairs. On a microscopic level, the leaf hairs align in a structure that resembles an egg beater or whisk. Using a method called immersed surface accumulation 3D printing (ISA 3D printing), the researchers [at the University of Southern California] were able to recreate this egg beater microstructure, called the Salvinia effect, using plastic and carbon nanotubes. The result was a material that was both highly hydrophobic and oleophilic, or oil-absorbing. The combination allows oil and water to be efficiently separated.

Read more about it here.

Full Speed Ahead: Using Additive Manufacturing to Repair Ships at Sea

Researchers Pamir Alpay, left, and Rainer Hebert, hold a sample of 3-D metal printing at UConn's Innovation Partnership Building. (Peter Morenus/UConn Photo)

When a ship runs into trouble at sea, it can be time-consuming and disruptive to take it ashore to get it fixed. A team of UConn engineers has now developed a way for a ship’s crew to pinpoint the exact location of any mechanical trouble on board and, instead of taking the ship offline for maintenance, to repair or replace the part while the ship is still at sea. The researchers, led by associate professor of materials science and engineering Rainer Hebert, have created a device that uses ceramics on additively manufactured metals to obtain signals about degradation or certain other potential problems, such as overheating. They are also developing a field-deployable manufacturing process that could produce replacement parts from electronic files using a 3D printer on board ship after the metal-ceramic parts indicate failure or problems.

Read the full article here.

We are going to be at AMUG 2018, with a few sessions lined up on production AM! Check out this link for more information.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

How AM On-Demand Manufacturing Shifts Production… to Everywhere (Authentise Weekly News-In-Review – Week 53)

Additive manufacturing is taking part production and making it decentralized, capable of happening at every node of the global network. This is a transformational opportunity, making autonomous units able to attend to their needs, on-demand, upending a complex logistical headache that is the current manufacturing industry. Take for example a military ship, out at sea, with a crisis on their hands and no spare part to patch it. UCONN engineers are devising ways to implement AM capabilities on vessels so that they can have the agility to address the problem without making port. This can be the case for farming platforms or bomb defusing exercises. Crafting their own alternatives brings the problem to the people that are fully immersed in the field, who know what they need and what is lacking in current options. This is an interesting development, not to mention transportation/logistical transformation and IP sharing/securing issues. We still have a lot to figure out, but it’s exciting to be on this wave making it happen.

Full Speed Ahead: Using Additive Manufacturing to Repair Ships at Sea

Researchers Pamir Alpay, left, and Rainer Hebert, hold a sample of 3-D metal printing at UConn's Innovation Partnership Building. (Peter Morenus/UConn Photo)

A team of UConn engineers has now developed a way for a ship’s crew to pinpoint the exact location of any mechanical trouble on board and, instead of taking the ship offline for maintenance, to repair or replace the part while the ship is still at sea. They are also developing a field-deployable manufacturing process that could produce replacement parts from electronic files using a 3-D printer on board ship after the metal-ceramic parts indicate failure or problems.

Read the full article at UCONN Today.

3D Printing Saves Time and Money in Urban Farming Product Design and Prototyping

Brooklyn-based Farmshelf wants to make it easy for anyone to grow their own food, and has developed an autonomous system, complete with custom 3D printed parts, that makes it possible for individuals, restaurants, and residential communities to do so on-site.

Andrew Shearer, CEO and Co-Founder of Farmshelf, said, “As a company, you can now look at 3D printing as a way to involve more people in the building process, and involve more in the prototyping and dreaming process, thanks to how easy it is.”

Keep reading here.

3D Printing Provides Utah Law Enforcement With an Explosive Solution

Training at WMDTech. Photo via WMDTech.

A police department in the US has invested in a 3D printer and introduced 3D printer courses for its SWAT team and bomb squad. Sgt. Harold “Skip” Curtis, from Utah County Sheriff’s office, initially 3D printed parts for a detonation exercise with the help of explosives service and training bureau WMDTech. Following the success of this, the sheriff’s office has invested in an FFF 3D printer and a dedicated server for sharing designs, while WMDTech has introduced a pilot course to teach SWAT and bomb techs how to draw and print 3D objects.

Read the full article here.

We hope you’ve had a merry and relaxing Christmas and now, we wish you a happy new year!

Follow us on Twitter to keep updated on AM & IIoT related news!