Manufacturing agility: on-demand printing through AM (Authentise Weekly News-In-Review – Week 57)

The manufacturing model that has characterized the last two centuries was one of irrepressible rush to satisfy the demands of the market. Factories constantly spewed products and parts, even when all orders were satisfied, trusting on times when these might be requested again. Needless to say, this model is very wasteful and contains surplus expenses for stocking and unneeded manufacturing, the infamous “bullwhip effect”, that partake in a feeling of gambling on the market’s ups and downs. Both customers and companies are left unsatisfied. Zara, which makes 50% of its inventory close to the point of use, only sells 10% of its inventory at a discount. Its competitors, 30%.

Additive manufacturing provides the means for a more agile manufacturing framework, one that is capable of flexibly addressing new, and sudden, needs without falling back on warehouse stock. The concept can be applied to every industry on the planet: pharma companies can 3D print drugs on the fly and locally to address an urgent outbreak, constructions can be tailored to local requirements without shipping prefabs. To realize the potential of AM in addressing these demands, the pipeline must be enabled by software capable to provide a holistic overview of operations to nimbly set about whatever request it might face. That’s what we’re focused on at Authentise. Talk to us if you want to know more.

New ‘Reactionware’ 3D Printing System Spits Out Pharmaceuticals On-Demand

Philip Kitson and colleagues at the University of Glasgow have developed a new framework for 3D printing drug manufacturing devices on-site on an as-needed basis. All it requires is a $2,000 3D printer and a drug specification (the manufacturing processes required to produce it). Given such a specification, software created by Kitson’s group dictates to the printer exactly what sort of manufacturing hardware it needs to print that is then capable of producing a particular drug.

Read the rest of the article on Motherboard.

World’s First 3D Printed Toilets Coming to India With Singapore’s Hamilton Labs

Hamilton Labs' 3D printed toilet design complete with energy genertaing solar panel roof. Image via Hamilton Labs

In a new agreement with India’s Center for Rural Information and Action (CRIA) Hamilton Labs will be providing a robot operated 3D printer to “build fast, beautiful and comfortable toilets,” for the Madhubani district in Bihar which sprawls Eastern and Northern India.

Read more about it here.

Mass Production – Is 3D Printing Up To The Supply-Chain Challenge?

Custom designs of 3D printable model cups, from One Coffee Cup a Day | 30 days, 30 cups challenge by Bernat Cuni of Cunicode Design Studio

The Bullwhip Effect describes a phenomenon in which manufacturers build a huge inventory of products based on a forecast of customer demand. From the assumed position high on the supply chain, a manufacturer can misinterpret consumer purchasing behavior at retail level – resulting in a mass of unsaleable stock. Mass customization, i.e. making products to exact customer specifications, low-labor demands and product consolidation, gives 3D printing the potential to break free of the Bullwhip Effect, therefore leading to the question:

“If the Bullwhip Effect is a critical problem in any supply chain, would 3D printing be a solution?”

Read the full article here.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

AM, Enabler of Breakthroughs (Authentise Weekly News-In-Review – Week 33)

3D printing is opening doors for what were previously thought to be unfeasible projects, paving the way for breakthroughs in a wide variety of areas: The Cell3Dtor project, funded by the European Union, is aiming to bring to market solid oxide fuel cells (SOFCs), much more energy efficient and easily/cheaply manufacturable through 3D printing. Bioprinting is going further than medical implants, enabling tunable designs of biological matrixes to radically change drug testing. Graphene is also almost ready for mass-production as a new 3D printing method using Nickel and sugar makes it simple and efficient to produce.

Cell3Ditor uses ceramics 3D printing to improve production of energy efficient solid oxide fuel cells

A pioneering new project, Cell3Ditor, by the Catalan Energy Research Institute is now aiming to leverage ceramics 3D printing to help the environment more directly, with the production of new, more efficient solid oxide fuel cells (SOFCs). Currently, manufacturing a SOFC requires more than 100 stages of production, with the different components being made separately and assembled with vitreous seals. This complexity greatly increases the costs of both production and initial investment, which is estimated at around € 4.8 million. 3D printing technology could change all this for the better, cutting down production time and costs as well as drastically simplifying the whole assembly process. 3D printing techniques also allow for an improved final product, as the cell could be made in one single piece.

Read the full article here.

Why Drug Testing May Be the Most Important Application of 3D Bioprinting

3D printed tissue is proving to be an effective means of testing new pharmaceuticals, meaning that drugs can be thoroughly assessed and brought to market more quickly, all without harming animal test subjects. A group of researchers from Queensland University of Technology (QUT) recently published a paper discussing the development of a new type of bioink that enables the 3D printing of cells and other biological materials as part of a single production process. You can access the paper, entitled “Mechanically Tunable Bioink for 3D Printing of Human Cells,” here.

Read the article at 3DPrint.

Scientists May Have Discovered a Sweet Way to Mass Produce Graphene

Image Credit: Tour Group/Rice University

Nanotechnologists from Rice University and China’s Tianjin University have come up with a way to make centimeter-sized objects of atomically thin graphene that’s pretty sweet. The method is simple, can be performed at room temperature, and only requires sugar and nickel in a process called “3D laser printing.” Due to the printing method, the scientists were able to control the shapes to the level of the pore and make them 99 percent air — retaining graphene’s lightness. This is a landmark for the “miracle material” — composed of a single atomic layer of hexagonally linked carbon — which has paradigm-shifting potential due to its high strength (200 times stronger than steel) and conductivity.

Read more about the landmark here.

 

See you next week for another News In Review! Our Twitter feed will keep you updated on the latest 3D printing/IIOT news as you wait.