Fostering electronics development through 3D printing (Authentise Weekly News-In-Review – #126)

The field of electronics has been particularly prone to evolution in the past, with the shrinking of the circuitry and increasing of computational powers. However, it’s always been an inherently multi-step production process which reduces the opportunities for exploration into new shapes, material, and properties. 3D printing is beginning to apply its features to electronics as part of the multi-material printing push. This not only enables innovators to experiment much more freely with their PCBs, but iterations can also happen much more frequently. For testing purposes, this is the perfect combination. New satellites are being developed (and sent to the ISS) as well as new eco-friendly electronics that dissolve into the environment. For many companies, this is the means to a faster product development cycle for items that had to be ordered from China, shipped, tested and ordered anew with a few tweaks. The ability to print electronics in the lab is a very powerful tool.

International Space Station Will Test 3D-Printed Materials In Orbit

Nano Dimension's 3D printing process in action.

New 3D-printed materials are going to space thanks to a recently funded partnership between Israel’s NanoDimension and Florida’s Harris Corp. The companies plan to create new materials to reduce the manufacturing of small satellites, an exceedingly popular market right now for applications ranging from weather observations to remote surveillance.

Read the rest at Forbes.

Collaboration sparks sustainable electronics manufacturing breakthrough

IMAGE

Simon Fraser University and Swiss researchers are developing an eco-friendly, 3D printable solution for producing wireless Internet-of-Things (IoT) sensors that can be used and disposed of without contaminating the environment. SFU professor Woo Soo Kim is leading the research team’s discovery involving the use of a wood-derived cellulose material to replace the plastics and polymeric materials currently used in electronics.

Read the full article at EurekAlert.

NanoDimensions and Hensoldt Partner to Develop 3D Printed Sensor Technologies

The 3D printed radio frequency (RF) circuit board. Photo via Nano Dimension.

Israeli 3D printed electronics manufacturer NanoDimension has partnered with Hensoldt, a German-headquartered sensor technology specialist. The two companies will use the DragonFly electronics 3D printer to develop applications for Hensoldt’s security and defense division. Thomas Stocker, Hensoldt’s Head of Engineering, said,

“Our focus is on providing our customers with the highest quality cutting-edge innovations […] By using the DragonFly, we’ve already accelerated our application development.”

Read the full article at 3D Printing Industry.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Why “Edge Computing” is edging closer and closer (Authentise Weekly News-In-Review – #121)

There are various reasons to be excited about edge computing. It proposes a localized way to deal with data analysis, making individual nodes independent of a central hub. This offers greater levels of security, isolating data to where it needs to be processed, as well as quicker responsiveness, obtaining actionable insights without the need for data transfer. There are still a few roadblocks to sort before the technology becomes fully applicable to all industrial settings. Mainly, these have to do with the convergence of IT and OT fields, enabling easier communication and action. The technology is there when it comes to processing and data transfer. Next generation PLCs address the needs of an edge network, reducing complexity along with installation time and costs. In parallel, 5G connection will enable extremely fast communication for large volumes of data (already proving itself valuable for autonomous cars). Decentralizing operations, in manufacturing and elsewhere, will lead to more secure and optimized workflows.

Is IIoT Edge Computing Ready Yet?

Image of a cloud and edge computers linked to it

Edge computing is evolving because of the high demand to move computer processing closer to sensors to decrease latency and improve efficiency. The IoT device at the edge must be responsible for computing, storing and network connectivity, all in a small form factor. Depending on the requirement, processed data from the sensors can be sent to the cloud either in parts or all at once.

Read the full article here.

The IIoT Challenge

https://www.automationworld.com/Benson%20Hougland%2C%20Opto%2022

[…] getting that data from the edge of the network where it’s produced to the databases and people who need it can be a challenge. Communication for control as well as monitoring and data acquisition can be even tougher. For the IIoT applications we’re doing now, we need a new approach—a new product that does much more than a PLC or PAC, a product that shrinks the middleware and improves security. That product has recently appeared. It’s called EPIC—Edge Programmable Industrial Controller. Because an EPIC replaces middleware and reduces the steps required to get data, it reduces complexity, lessens security risks, and decreases the time and expense of installation and maintenance.

Read the full article at Automation World.

5G’s Important Role in Autonomous Car Technology

5G in the auto industry

The fifth-generation wireless technology is expected to connect almost everything around us with an ultra-fast, highly reliable, and fully responsive network. 5G will allow us to leverage the full potential of advanced technologies such as AI, VR, and the Internet of Things (IoT). Self-driving cars use hundreds of sensors to make vehicles faster and smarter. These sensors generate unprecedented amounts of data, much more than any other IoT adoption would. Handling, processing, and analyzing this amount of data requires a much faster network than the existing 4G technology. Autonomous cars, systems require incredible data processing capabilities and speeds needed to mimic the timing of human reflexes.

Read the rest here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

IIoT is the future of workplace safety (Authentise Weekly News-In-Review – #118)

The increasingly connected systems in place at the factory floors are enabling safer workplaces. The most straightforward approach here is to don workers with sensors that can detect hazardous environment parameters like air quality and temperature or even automatically alert someone if they are injured. In most cases, however, it’s about bypassing the need for human workers to do dangerous tasks. Technologies like predictive analytics can do tremendous work in alerting supervisors before parts get broken and become hazards. Similar smart systems need to be put in place when cooperative robotics start working alongside human counterparts. Using machine learning and computer vision, safety can be guaranteed as robots can have comprehensive knowledge of their surroundings and predict human actions, as well as maximizing the robot’s effectiveness.

Using IIoT-Connected Devices for Worker Health & Safety

IBM announced collaborations with Garmin, Guardhat, Mitsufuji and SmartCone to help organizations monitor their workers’ safety with Watson IoT. Source: IBM

Workplace safety is important in any field. For example, in my line of work, I’m always vigilant of dangers from hot coffee, eye strain, or paper cuts. But in industrial environments such as the manufacturing, petrochemical, or mining industries, the potential dangers are more severe. That’s why researchers and engineers are exploring new ways to use industry 4.0 technology to protect the health and safety of industrial workers.

Read the full article here.

How IoT and Computer Vision Can Enhance Industrial Safety

Welder's safety is protected by IoT

Using IoT sensors can feed the algorithm with real-time data and allow it to make decisions on the spot. For example, if sensors detect gas leakage, increased temperatures or unwanted humidity, work can stop at once or at the very least inform the floor manager. These type of decisions are deterministic and don’t provide much insight into the future. Another way of creating a safer environment is to use the power of computers and machine learning. By creating different scenarios, the algorithm can sense the difference between what is safe and what is not.

Read the rest here.

Collaborative Robots Learn to Collaborate

An automated mobile robot (AMR) uses 3d vision and machine learning to navigate in a more natural manner past a person moving a cart in a warehouse aisle.

To be truly collaborative, robots must be capable of more than working safely alongside human beings. Russell Toris, director of robotics at Fetch Robotics, says robots also need to act (and “think”) more like people. This is particularly true of autonomous mobile robots (AMRs) like those manufactured by Fetch. Typically employed for material transport and data collection (such as counting inventory), these wheeled systems use vision sensors and navigation software to dynamically adapt to new environments and situations. Increasingly common in warehouses and distribution centers, this technology is likely to spread to other applications and industries, including our own.

Read the full article here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

The problems, and solutions, to the IIoT (Authentise Weekly News-In-Review – #110)

The Industrial Internet of Things (IIoT) is taking hold on many industrial settings, and yet we are still far from reaping its true benefits. There are multiple reasons for this, and they have to do with the technical limitations of dealing with a large number of sensors and data, how to interpret it correctly and efficiently and how to create a reliable mesh network to tie it all together. AI may look promising for data handling and predictive systems. However, there are many angles to iron out before these make feasible solutions. AI’s prowess on self-teaching may fall short when, to be useful, it would have to learn and predict countless possibilities of a complex industrial setting. Established technologies, or novel combinations of them, can bring exciting opportunities to the table. RFID tagging for warehouse traceability is a dream come true for spoiling inventories while merging long-range connectivity with cloud services can satisfy a large portion of IIoT applications.

How IIoT and RFID deal with perishable inventory

Screen Shot 2019-02-25 at 11.17.42 AM

In North America alone, billions of dollars of food spoil before reaching customers each year. In the pharmaceutical industry, temperature-sensitive products are regularly damaged due to inappropriate shipping and storing conditions. To gain better visibility into the location and the condition of perishable inventory items, businesses can turn to RFID and IIoT technologies.

Read the full article at Smart Industry.

Is Artificial Intelligence the Answer for IIoT?

Many AI methods are self-taught, so they avoid the need for process mapping and other tedious analytical processes, making it seem to be the right fit for IIoT. Yet, only a few methods will apply. The most useful methods are not greedy for impossible amounts of data. They focus machine learning in explainable ways. The rest will fail badly.

Read more here.

Using LoRa and Google Cloud for IIoT Applications

Image of a gateway communicating with the cloud on LoRa

Pairing LoRa connectivity with the Google Cloud Platform (GCP) can serve a wide range of industrial IoT (IIoT) use cases. The longevity and resilience of LoRa paired with GCP’s robust architecture and commitment to scalable innovation provides industrial operators with the tools they need to build the world of tomorrow.

Read more here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

How is 3D printing revolutionising healthcare? Customization (Authentise Weekly News-In-Review – #103)

Fresh from the holidays and a weekly break we took a deeper dive into the healthcare sector: The disruption is coming in heavy to the sector, not least from 3D printing. The most interesting feature that AM technologies bring to the table is customization and this manifests itself in many forms. The most renowned and established one is the manufacture of implants and guides that are based on CT scans and patient-specific physiology. Now that’s being broadened by even more tailored healthcare solutions such as pills and 3D printed drugs that can contain personalized treatments or even sensors to keep conditions monitored. Much of this wave of customization is being bolstered by a greater range of data that is obtainable by the healthcare sector, through consumer-grade devices or even apps. The digitization of our health is not only giving us new perspectives into our conditions but also opening new paths for the medical industry to reinvent its treatments.

Authentise recently partnered with leading additive “medifacturing” lab, PrinterPrezz, to drive the industry forward even further. Want to find out more about additive and healthcare: check out our friends at 3DHeals.com

Neutrogena To Launch Personalised 3D Printed Face Masks

The MaskiD app. Photo via Neutrogena.
Neutrogena, the American skincare brand of the multinational healthcare company, Johnson & Johnson, has introduced its customizable 3D printed face mask. Known as the MaskiD, this beauty venture uses photographs from a smartphone to micro 3D print a face mask suited to the consumer’s skin type and desired treatment. Speaking to Condé Nast beauty publication allure Michael Southall, research director and global lead of beauty tech at Neutrogena explained:

“The key with 3D printing is [that] we can put the active [ingredient] you want just where you need it, anywhere on the mask, as opposed to one product that you’re trying to use all over the face.”

Read the full article here.

 

Are 3D printed ingestible capsules the future of drug delivery?

 

3D printed ingestible capsule

[…] MIT, Draper and Brigham and Women’s Hospital, have collectively developed a 3D printed ingestible capsule capable of personalized drug delivery and much more. The small 3D printed capsule is designed to be swallowed by the patient and then to remain in the stomach for up to a month, where it can not only deliver drugs following a programmed schedule, but can also transmit information to the user’s smartphone and detect certain situations, such as infections and allergic reactions. The innovative device could be particularly useful for treating diseases or conditions where drugs are required over a long period of time.

Read the rest here.

Anatomiz3D Partners with Incredible AM to Deliver 3D Printed Patient-Specific Healthcare Solutions

 

Now, [Anatomiz3D] has announced that it’s partnering up with another Indian company [Incredible AM] to develop various 3D printed specialty solutions for the personalized healthcare industry. With Incredible AM Pvt Ltd’s capabilities in metal 3D printing, paired with the design and plastic 3D printing skills provided by Anatomiz3D, this new partnership is essentially a one-stop-shop when it comes to personalized, patient-specific healthcare solutions.

Read the rest here.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Matches made in heaven: the crossroads of innovation (Authentise Weekly News-In-Review – Week 62)

Technologies have often found it beneficial to tap into innovations, sometimes from quite different fields, to find new potential directions to explore. Considering 3D printing’s flexibility, it’s only logical to see it being employed to uplift the possibilities of this or that application. For example, AM enables a new generation of implants to include sensors embedded in them, for a better fit and smarter monitoring respectively. Similarly, in a little validation for us: IIoT is making helping Enterprise Resource Planning (ERP) systems make most of its functions, feeding live, relevant and actionable data to businesses. The matrix of explorations is endless, and combining experimental technologies is showing us new ways to manufacture, design and ultimately, thing about innovation.

Renishaw Case Study: Benefits of Smart Implants with Sensor and 3D Printing Technologies

Renishaw and Western University previously set up the Additive Design in Surgical Solutions (ADEISS) Centre on the university’s campus, which brings together academics and clinicians to work on developing novel 3D printed medical devices. The institute is currently developing technology in the sensor implant field, and recently introduced its smart hip concept, which uses accelerometers and temperature sensors to collect patient data, which is later communicated to a remote device.

Read the full article here.

IIoT And ERP: Powerful Combination Fueled By Data

The IIoT bridges the shop floor and ERP software to allow for the creation and sharing of data in real time. With machine connections, such as programmable logic controllers (PLCs) and sensors, production data is linked to lot, serial and batch details for a seamless flow of information through the cloud. Utilizing data from sensors and other Big Data sources helps businesses analyze data quickly and make better informed decisions. Businesses can better monitor inventory replenishment, sales demands, parts replacement — they can improve virtually any business process to reduce operational and maintenance costs. This is exactly the approach Authentise is following with our data-driven MES.

Read more at Manufacturing Business Technology.

Combining augmented reality, 3D printing and a robotic arm to prototype in real time

Robotic Modeling Assistant (RoMA) is a joint project out of MIT and Cornell that brings together a variety of different emerging technologies in an attempt to build a better prototyping machine. Using an augmented reality headset and two controllers, the designer builds a 3D model using a CAD (computer-aided design) program. A robotic arm then goes to work constructing a skeletal model using a simple plastic depositing 3D printer mounted on its hand.

Read the full article at TechCrunch.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Reinventing the Mundane: rediscovering potential through AM (Authentise Weekly News-In-Review – Week 55)

AM is giving us the capabilities to drastically improve the performance of many of the parts and systems around us. This is because of its much greater design freedom, material choice, density control and other features that make AM a manufacturing game-changer. With this tool in our hands, we can really start to think taking mundane objects to the next level. Developing these applications shows where AM needs to improve to start making a dent. For example, special certifications need to be worked for it to be safely implemented pervasively. Currently there aren’t even 50 standards for the whole range of additive manufacturing materials. Even traditional glass blowing has over 100. The potential is there not only to get better performance out of every item, but to create a whole range of entirely smarter, more environmentally friendly products unthinkable in the past: Nuclear spare parts, efficient heat exchangers and wireless communication without electronics, to name but a few.

Westinghouse Looks to Advance 3D Printing in the Nuclear Industry

Now power company Westinghouse plans to be the first company to install a 3D printed fuel component in a commercial nuclear reactor.
Westinghouse is looking to lower the cost of replacement parts as well as to speed the qualification of 3D printed materials.

“These cost and lead time reduction estimates still look appropriate for certain replacement castings, using current cost estimates for AM casting moulds and the associated foundries/casting processes,” said Clint Armstrong, Advanced Manufacturing Expert at Westinghouse.

Read the full article here.

HiETA Uses Renishaw Metal 3D Printer to Take Heat Exchangers From Prototyping to Commercial Production

HiETA develops metal AM methods to produce lightweight, complex structures for heat-management applications, such as internal combustion engine components, turbo machinery, recuperators, and heat exchangers for fuel cells. The first successful 3D printed component was built in 17 days, which HiETA and Renishaw worked to bring down to eighty hours by optimizing the process parameters and improving both the software and hardware. According to tests, the component, which achieved 30% lower weight and volume, met the requirements for heat transfer and pressure drop.

Read more about it here.

3D Printing Wireless Connected Objects

University of Washington researchers have developed a way to 3D print plastic objects and sensors capable of communicating wirelessly with other smart devices, without the need for batteries or other electronics.

 

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Approaching the Modernization of Manufacturing (Authentise Weekly News-In-Review – Week 48)

Upgrading to better standards and technologies is becoming easier than ever thanks to their decentralized and scalable nature, giving the opportunity to improve by gradual implementation and testing. There are many avenues of experimentation to consider. IIoT applications can be implemented as small, self-contained units, providing their own power and relaying sensible information where the most valuable data is to be found with a very small investment. Incorporating AM capabilities allows businesses to underpin numerous steps of traditional part production and logistics, assessing ROI that is clear from the start. However, the right software can sometimes be enough to jumpstart operational efficiency immensely, by automating and analyzing machine data with little effort and investment. Authentise very recently started integration of SLM machines data into its 3Diax platform. The digital age of manufacturing enables future-oriented actions to be taken at any business leisure.

Powering The IIoT With Industrial Grade Solar/Li-Ion Hybrids

[Small photovoltaic (PV panels) in combination with Lithium-ion (Li-ion) batteries], two well-proven and synergistic technologies are providing highly cost-effective solutions for both consumer and industrial grade applications, including many connected to the IoT and the IIoT. All sorts of industrial applications are currently deploying PV/Li-ion battery hybrid technology, including GPS sensors and asset trackers, environmental monitoring systems, smart agriculture (monitoring moisture, temperature, and rainfall), marine buoys, and many other M2M and systems control and data automation (SCADA) applications.

Read the full article at Sensors Online.

Sembcorp Marine To Apply AM In Shipbuilding Revolution

A LAAM made part on display at the Sembcorp Marine MOU signing. Photo via A*STAR

Sembcorp Marine is seeking to revolutionize the offshore & marine (O&M) sector by adding cutting-edge technologies to its shipbuilding and repair efforts. In collaboration with three partners across industry and the Singapore government, the company will develop water-tight production applications with a Digital TwinAM and drone assistance.

Read the full article here.

SLM Solutions: Cooperation agreement signed with Authentise Inc.

SLM Solutions Group AG , a leading supplier of metal-based additive manufacturing technology, has recently signed a cooperation agreement with Authentise Inc. Software developed by Authentise helps SLM Solutions customers expand additive manufacturing capacities through greater efficiency, transparency and quality in deploying SLM machines.

Read the full press release here.

 

If you wish to be kept updated on a daily basis on movements in the AM/IIoT world, as well as our service updates and events check out Twitter feed!

IIoT, stepping stones to a smarter manufacturing framework (Authentise Weekly News-In-Review – Week 23)

Every business, in manufacturing and otherwise, is coming face to face to the reality of present day interconnected capabilities. The Industrial Internet of Things is often described as the next logical step of the industrial world: after hardware automation comes smart, data-driven, connected way of doing things. The possibilities are astounding and, for many businesses, daunting to achieve, fearful as they are of investing time and money in systems and practices they don’t really understand. Fortunately, first steps are relatively easy to make: Sensors are becoming extremely cheap, making the hardware investment very feasible. “Digital twins” are an example of intuitive, data-driven interfaces for predictive enterprise management. We’re also lowering barriers by becoming more sophisticated: Edge computing lightens the network’s costs compared to trying to eat the cake whole.

PS: Check out what Authentise is doing with IIOT – connecting printers to drive automation and insight for additive manufacturing . 

Research proposes 3D printed sensors to work as warnings in extreme environmental conditions

Researchers at King Abdullah University of Science and Technology, have used 3D Printed sensors to test for levels indicative of forest fires and industrial leaks. This photo is of a controlled fire by Sustainable Resource Alberta, started to promote diversity and create a wall to future fires. Photo by Cameron Strandberg, 38449766@N03 on Flickr

A research team from King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, has published a paper proposing 3D printed disposable and wireless sensors for monitoring large areas. The proof-of-concept study shows the potential of 3D printing as a low-cost method of making fully integrated wireless sensors, which can be utilized in extreme environmental conditions such as forest fires and industrial leaks.

Read the rest of the article here.

Seeing double–digital twins & the future of IIoT

DigitalTwin

Digital twin technology has been trending in the news for quite a while, yet it should be no surprise that it’s in the Industrial Internet of Things where the concept of a virtual representation of a physical product or system will be the most valuable. The digital twin paradigm enables manufacturers to do two things–operate factories efficiently and gain timely insights into the performance of the products manufactured in these factories.

Read more about “Digital Twins” on Smart Industry.

Three reasons why edge architectures are critical for IIoT

[IIoT] data is only valuable if it can be accessed and acted upon quickly, efficiently and safely. Effectively accessing data can be especially challenging when you have “things” — such as sensors, devices, flow computers and more — that live on remote areas of the network. […] The data from these remote sites has the potential to generate valuable business, but is often too far away, too expensive or too insecure to transmit for time-critical operations. Edge computing devices can solve the challenge of making this data available in real time.

Read more at IoT Agenda.

 

Keep following us on Twitter, where we share interesting news and updates to our services, and be sure to come back next week for another edition of the News-In-Review!

Week in Review: September 19th to 26th – AM Materials’ Expansion

Hello, welcome to another week in review brought to you by Authentise.

This week got a lot of buzz going for breakthroughs and materials bringing excitement to the world of AM: we got 3D printed cemented carbide tools courtesy of Fraunhofer Institute for Ceramic Technologies’ (IKTS) new binderjetting technique, bioengineered plastic spitting bacteria to supply future space missions and a whopping AM breakthrough in flexible thermoelectric devices which promises plummeting prices for coming IoT clothing and more.

Let us begin.

 

Fraunhofer IKTS develops 3D printed carbide tools with adjustable mechanical properties

Fraunhofer IKTS will present 3D printed cemented carbide (hard metal) tools at the World PM2016 Congress & Exhibition… IKTS scientists used a binder jetting 3D printing method to produce the tools. According to the researchers, these 3D printed tools are of comparable quality to those produced using conventional methods, and can be made into more complex shapes.

Read the full article here.

 

Bioengineered bacteria could be used to 3D print food and tools on Mars

cosmocrops d printing best picture the martian

A Danish research team is working on a synthetic biology project called CosmoCrops, which hopes to use bacteria to make it possible to 3D print everything needed for a respectable space mission, using a cutting-edge co-culturing system. To this end, the team has designed a special kind of bioreactor and has bioengineered bacteria that can be used to produce the necessary 3D-printing materials.

Read more at Digital Trend.

 

Nano Dimension paves way for wearables by 3D printing conductive patterns onto fabric

Israeli PCB 3D printing pioneer Nano Dimension has just successfully 3D printed conductive patterns made from silver nanoparticles onto specially treated fabric. This achievement, realized in collaboration with an unnamed leading European functional textiles company, paves the way for sensors and electronics that are actually part of your clothing. It proves that even functional and ‘smart’ fabrics, packed with sensors, are realistic possibilities and do not need to be limited by movement, folding or wearing.

Read the full article here.

 

Research explores thermoelectric screen printing

In work led by professor Yanliang Zhang at Boise State University, high-performance and low-cost flexible thermoelectric films and devices were fabricated by an innovative screen-printing process that allows for direct conversion of nanocrystals into flexible thermoelectric devices. Based on initial cost analysis, the screen-printed films can realize thermoelectric devices at 2-3 cents per watt, an order of magnitude lower than current state-of-the-art commercial devices.

Read more about the breakthrough at ScienceDaily.

 

Subscribe to our mailing list

* indicates required




Also receive our weekly News-in-Review?