Finding the new limits of AM (Authentise Weekly News-In-Review – Week 88)

If you think that AM is sitting comfortably into its allotted seat, that it has already found its target market, you’d be wrong. AM’s flexibility enables us to find numerous potential fields to disrupt. This flexibility is made possible by its assortment of technologies, hardware, software and everything in between, that change the rules year by year. Advances in robotics and AI enable groups of autonomous, mobile units to step up the construction process. After the 3D printed pills and surgical models and implants, we are now beginning to use AM in the development of new future-proof antibiotics. Strong of its success of sending the first 3D printer to the ISS, Made in Space is aiming to produce higher quality fiber optics in space, creating a new business case for manufacturing in and outside Earth’s orbit.

Mobile Robots Cooperate to 3D Print Large Structures

A team of robot arms on mobile bases can 3D print large structures quickly

Roboticists at Nanyang Technological University in Singapore have, for the first time (as far as they know), performed “the actual printing of a single-piece concrete structure by two mobile robots operating concurrently.” The big advantage of this system is that you can use it to build structures that are more or less arbitrary in size without having to change the system all that much, since the robots themselves can define their own build volume by moving around.

Read more at IEEE Spectrum.

HP Partners With CDC To Test And Bioprint Antibiotics

The HP D300e Digital Dispenser BioPrinter. Photo via HP.

HP has announced its participation in the Centers for Disease Control and Prevention (CDC) pilot program that aims to develop new antibiotics designed to fight antimicrobial-resistant bacteria. With HP’s bioprinting technology, microbiologists are able to print antibiotics samples for testing directed at halting the spread of such bacteria.

Read the full article here.

Optical fibre made in orbit should be better than the terrestrial sort

Made in Space and FOMS (Fiber Optic Manufacturing in Space) are both proposing to manufacture optical fibre of the highest quality in the free-falling conditions of the International Space Station. At $1m a kilogram, this is a material that is well worth the trip to and from orbit.

Read more on The Economist.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

AUTHENTISE will be exhibiting, through a partnership with America Makes, the power of smart digital tools within the AM production thread. Showcasing our 3Diax modular platform and MES for AM, you’ll be able to witness how our machine learning algorithms and automation tools can boost operational performance through the roof for each role within the pipeline.

WHERE: additive ETC, located on Level 3 of the West Building at McCormick Center.

Big, Longshot Projects Pushing AM to the Limit (Authentise Weekly News-In-Review – Week 67)

Now that we have realized the potential of AM through a period of (still very much ongoing) experimentation, we are now starting to employ the technology on grand challenges never before considered. We’ve made AM flexible and adaptable enough to be used on very large, very demanding scales. Some of these projects have been in the works for quite some time, others have only as of lately become feasible as the technological basis supported the effort. Remember the 3D printed bridge by the MX3D people in 2015? It was finally completed, after a few hurdles and change of plans. Not 3D printed on location as it was originally planned, but the result is stunning nonetheless. In other news, CEO of Relativity Space affirms that the company is capable of 3D printing every part of a rocket, in just 60 days, cutting the number of total parts to 1/10 in the process. Sounds out of this world, but the company already raised $45M to prove its claims. In the racing world, they are accustomed to AM raising the performance metric. LEHVOSS Group wants to take it up a notch by 3D printing an entire sailboat.

 

Welding robots complete 3D-printed steel bridge

The bridge took four robots six months to print

Back in June of 2015, we heard about how Dutch 3D-printing firm MX3D was planning on printing a steel footbridge that would go across Amsterdam’s Oudezijds Achterburgwal canal. Well, construction of that bridge is now complete – although it still has to actually be placed over the water. The finished bridge is 12.5 meters long (41 ft), and took six months to print. It’s composed of 4,500 kg (9,921 lb) of stainless steel, along with 1,100 km (684 miles) of wire. Originally, MX3D hoped to print the bridge on location, with the robots starting at one side of the canal and then building their way across. This turned out to be impractical, however.

Read more about MX3D’s bridge at New Atlas.

 

A Fully 3D-Printed Rocket Is Not as Crazy as it Seems. Investors Agree.

Screen Shot 2018-04-08 at 1.55.18 PM

60 days. That’s how long it will take to produce and launch a rocket if the parts are 3D printed, according to the CEO of Relativity Space, a startup that seeks to do just that. Flying something made completely of 3D-printed parts into space sounds, frankly, pretty bonkers. But investors are on board. The Los Angeles-based startup recently secured $35 million to go ahead with its plan to produce a fleet of spacecraft using one of the largest 3D printers known to man, known as Stargate.

Read more at Futurism.

 

Lehvoss partners with Liverea Yacht to build 3D printed sailboat

Lehvoss 3D printed sailboat

The LEHVOSS Group announced March 14 it is partnering with Livrea Yacht (Palermo, Italy) to build the world’s first 3D printed sailboat. Since work began on the design in 2014, LEHVOSS Group has supported the process development and engineered its LUVOCOM 3F customized 3D printing materials specifically for the application.

According to Francesco Belvisi who is the CTO of OCORE, “The yacht will be highly competitive thanks to the light and strong 3D printed parts. 3D printing dramatically reduces the build time for the yacht and also makes it more economical. We are looking forward not only to building the first 3D printed boat but also to winning the competition in 2019.”

Read the full article here.

 

amug_logo_lgNext week, we are going to be at AMUG 2018, with a few sessions lined up on production AM! Check out the agenda for more information.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Want disruptive? I’ll give you disruptive (Authentise Weekly News-In-Review – Week 18)

We are all starting to realize that AM is becoming the game changer it promised to be. This week there are mind-blowing examples of the technology being used to radically change the game economically and logistically all across the board. What do you think will be the impact on the manufacturing industry now that players realize that AM can bring shave costs in the millions of dollars like Boeing had on its Dreamliner production in collaboration with Norsk Titanium? Or when serialized production turnaround happens in days instead of months like Oracle managed to achieve with Carbon technology? On a wider note, AM will radically transform planning for operations where in-situ manufacturing is possible, making it much more economically viable to make use of local resources, especially in space activities.

3D Printing Titanium Parts Could Save Boeing Millions on Dreamliner Production

A 3D printed structural titanium component made with Norsk’s proprietary Rapid Plasma Deposition (RPD) process.

Boeing hired Norsk Titanium to print the first structural titanium parts for its 787 Dreamliner, a shift that the Norwegian 3D printing company said would eventually shave $2M to $3M off the cost of each plane. Strong, lightweight titanium alloy is 7 times more costly than aluminum, and accounts for about $17 million of the cost of a $265 million Dreamliner, industry sources say.
Boeing has been trying to reduce titanium costs on the 787, which requires more of the metal than other models because of its carbon-fiber fuselage and wings.

“This means $2M to $3M in savings for each Dreamliner, at least,” starting in 2018 when many more parts are being printed, Chip Yates, Norsk Titanium’s vice president of marketing, said in a telephone interview.

Read more about the collaboration here.

Carbon 3D print series of 10,000 parts for Oracle Labs servers

The 3D model (left) and a 3D printed branch (right) of the brackets stacked one on top of the other. Image & photo via Carbon

Oracle Labs, the R&D branch of multinational computer technology corporation Oracle, has used Carbon CLIP technology to 3D print a series of end-use brackets for use in its micro servers. 10,000 of the parts were needed to align circuit boards in the systems, and production was turned around within days instead of months. At first, Oracle planned on a component design reliant upon injection molding to hold the circuit boards. This method proved to be ineffective at producing such small parts within the required time frame, and the method didn’t support multiple design iterations.

“Instead of printing parts by inch CLIP let us print parts by hour. That’s game changing” – Craig Stephen, Senior Vice President Research & Development at Oracle Labs.

Read the full article at 3DPI.

Mining Materials for 3D Printing in Space

The first part 3D-printed from metal harvested from a meteorite. (Courtesy of Planetary Resources)

“Everything has a finite amount of resources. Everything has a cost and benefit”.

With limited resources, how can we populate multiple planets with only one livable environment? Fortunate for us, all of our resources originated in space. Planetary Resources made a point at the CES 2016 that mining asteroids was the future. It did this by using 3D printing and metal from a meteorite to produce a part. In addition, 3D printing may be the process of how things are built in space. Scientists have already 3D printed plastic objects in space, and they believe we can 3D-print metals. However, it might be simpler than this. If water freezes on the surface of the planets we are looking to build on, and there is hydrogen and water as a resource on these bodies, 3D printing ice in the shape of buildings might provide a robust housing. Sound nuts? NASA didn’t think so and awarded $25,000 to a team that designed a Mars Ice House for NASA’s 3D printed habitat challenge.

Read more about our space-faring possibilities at Machine Design.

 

Come back next week for another edition of News-In-Review and touch base at our Twitter feed where we share more AM and IIoT related news!

Week in Review: September 19th to 26th – AM Materials’ Expansion

Hello, welcome to another week in review brought to you by Authentise.

This week got a lot of buzz going for breakthroughs and materials bringing excitement to the world of AM: we got 3D printed cemented carbide tools courtesy of Fraunhofer Institute for Ceramic Technologies’ (IKTS) new binderjetting technique, bioengineered plastic spitting bacteria to supply future space missions and a whopping AM breakthrough in flexible thermoelectric devices which promises plummeting prices for coming IoT clothing and more.

Let us begin.

 

Fraunhofer IKTS develops 3D printed carbide tools with adjustable mechanical properties

Fraunhofer IKTS will present 3D printed cemented carbide (hard metal) tools at the World PM2016 Congress & Exhibition… IKTS scientists used a binder jetting 3D printing method to produce the tools. According to the researchers, these 3D printed tools are of comparable quality to those produced using conventional methods, and can be made into more complex shapes.

Read the full article here.

 

Bioengineered bacteria could be used to 3D print food and tools on Mars

cosmocrops d printing best picture the martian

A Danish research team is working on a synthetic biology project called CosmoCrops, which hopes to use bacteria to make it possible to 3D print everything needed for a respectable space mission, using a cutting-edge co-culturing system. To this end, the team has designed a special kind of bioreactor and has bioengineered bacteria that can be used to produce the necessary 3D-printing materials.

Read more at Digital Trend.

 

Nano Dimension paves way for wearables by 3D printing conductive patterns onto fabric

Israeli PCB 3D printing pioneer Nano Dimension has just successfully 3D printed conductive patterns made from silver nanoparticles onto specially treated fabric. This achievement, realized in collaboration with an unnamed leading European functional textiles company, paves the way for sensors and electronics that are actually part of your clothing. It proves that even functional and ‘smart’ fabrics, packed with sensors, are realistic possibilities and do not need to be limited by movement, folding or wearing.

Read the full article here.

 

Research explores thermoelectric screen printing

In work led by professor Yanliang Zhang at Boise State University, high-performance and low-cost flexible thermoelectric films and devices were fabricated by an innovative screen-printing process that allows for direct conversion of nanocrystals into flexible thermoelectric devices. Based on initial cost analysis, the screen-printed films can realize thermoelectric devices at 2-3 cents per watt, an order of magnitude lower than current state-of-the-art commercial devices.

Read more about the breakthrough at ScienceDaily.

 

Subscribe to our mailing list

* indicates required




Also receive our weekly News-in-Review?