Bringing the future of eco-thinking through smarter manufacturing (Authentise Weekly News-In-Review – #122)

The impact that our human civilization is having on the environment is unprecedented and we need to be conscious and proactive about it. Fortunately, there are more benefits to be had through smart manufacturing technologies other than improved quality and lead times. By better monitoring the production process, we can avert hugely wasteful discrepancies, as NASA has been experiencing with faulty materials through 20 years (!!) of launches. Cutting edge tracking, monitoring and reporting tools, like Authentise 3Diax, enable companies to do just that, potentially saving millions of dollars. In parallel, new materials, designed to be recycled indefinitely and easily, will cast new light on everyday products and their construction. This is particularly important, as the mentality behind the design process has to change significantly to make the system work. Examples like the Apple AirPods show us how we must keep recyclability into much higher consideration, along with sources life-standards and production health concerns, when designing products that will help us preserve scarce resources and stay out of landfills.

NASA was sold faulty rocket parts for almost 20 years

453900main_launch2-m_946-710

When the launch of NASA’s Orbiting Carbon Observatory and Glory missions failed in 2009 and 2011, the agency said it was because their launch vehicle malfunctioned. Now, a NASA Launch Services Program (LSP) investigation has revealed that the malfunction was caused by faulty aluminum materials. More importantly, the probe blew a 19-year fraud scheme perpetrated by Oregon aluminum extrusion manufacturer Sapa Profiles, Inc. wide open. LSP, along with NASA’s Office of the Inspector General and the US Department of Justice, have discovered the Sapa Profiles falsified critical tests on the aluminum it sold.

Read the full piece on Engadget.

Plastic Gets a Do-Over: Breakthrough Discovery Recycles Plastic From the Inside Out

A team of researchers at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) has designed a recyclable plastic that, like a Lego playset, can be disassembled into its constituent parts at the molecular level, and then reassembled into a different shape, texture, and color again and again without loss of performance or quality. The new material, called poly(diketoenamine), or PDK, was reported in the journal Nature Chemistry.

Read the rest here.

AirPods Are a Tragedy

AirPods are a product of the past. They’re plastic, made of some combination of carbon, hydrogen, oxygen, nitrogen, chlorine, and sulfur. They’re tungsten, tin, tantalum, lithium, and cobalt.

Humans extract these elements from the earth, heat them, refine them. As they work, humans breathe in airborne particles, which deposit in their lungs. The materials are shipped from places like Vietnam, South Africa, Kazakhstan, Peru, Mexico, Indonesia, and India, to factories in China. A literal city of workers creates four tiny computing chips and assembles them into a logic board. Sensors, microphones, grilles, and an antenna are glued together and packaged into a white, strange-looking plastic exoskeleton.

These are AirPods.

Read the rest of the article on Vice.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!

Monitoring 3D prints – more than just a business boost (Authentise Weekly News-In-Review – Week 94)

We at Authentise are champions of the idea that 3D printing data must be exploited anywhere it is to be found. This often times comes from the printers themselves, offering KPIs on successful print rates and more. Yet even more information can come from external monitoring systems, which that can provide you with data from within the process itself. The benefits of running a monitoring system are numerous, from helping you identify, and potentially correct, issues from within the process, to giving an unprecedented look at still little-known physical phenomenons. Metal printing, for example, is still grounds of research, as we try to understand the dynamics of precise powder melting and the behavior of very hot particles. Another example would be to track 3D printed objects, based on the unique printing “signature” of each printer (like vibrational micro-defects), and thus being able to tell which printer produced it.

High-Speed Cameras Used to Monitor 3D Printing Process

camera2

In a thesis entitled “Process Monitoring for Temporal-Spatial Modeling of Laser Powder Bed Fusion,” a student named Animek Shaurya studies the use of high-speed video cameras for in-situ monitoring of the 3D printing process of nickel alloy 625 to detect meltpool, splatter, and over melting regions to improve the quality of the print.

Read more at 3DPrint.com

New NIST method measures 3D polymer processing precisely

182682_web

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a novel light-based atomic force microscopy (AFM) technique–sample-coupled-resonance photorheology (SCRPR)–that measures how and where a material’s properties change in real time at the smallest scales during the curing process. […] Surprising the researchers, interest in the NIST technique has extended well beyond the initial 3D printing applications. Companies in the coatings, optics and additive manufacturing fields have reached out, and some are pursuing formal collaborations, NIST researchers say.

Read the rest here.

This is how researchers can now track 3D printed guns, weapons

screen-shot-2018-10-19-at-10-17-52

According to academics from the University of Buffalo, there is a way to use the ‘fingerprint’ of 3D printers to accurately trace items printed through the machinery, which may include counterfeit goods, guns, and other weaponry.  No in-fill patterns are the same, and this is the key to tracking down a specific printer.

“3D printers are built to be the same. But there are slight variations in their hardware created during the manufacturing process that leads to unique, inevitable and unchangeable patterns in every object they print,” says Wenyao Xu, Ph.D., associate professor of computer science and engineering in UB’s School of Engineering and Applied Sciences and lead author of the study.

Read the full article here.

 

Senvol Developing Machine Learning for US Navy for Additive Manufacturing

Screen Shot 2018-10-22 at 12.15.26 AM

Senvol has publicly announced that it is developing data-driven machine learning AM software for the U.S. Navy’s Office of Naval Research (ONR). Senvol’s software analyzes the relationships between AM process parameters and material performance. ONR’s goal is to use Senvol’s software to assist in developing statistically substantiated material properties in hopes of reducing conventional material characterization and testing that is needed to develop design allowables.

Read more here.

 

We’ll be at Formnext in Frankfurt from the 13th to 16th November. Come see us at booth #B30J.

Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!