Reinventing the Mundane: rediscovering potential through AM (Authentise Weekly News-In-Review – Week 55)

AM is giving us the capabilities to drastically improve the performance of many of the parts and systems around us. This is because of its much greater design freedom, material choice, density control and other features that make AM a manufacturing game-changer. With this tool in our hands, we can really start to think taking mundane objects to the next level. Developing these applications shows where AM needs to improve to start making a dent. For example, special certifications need to be worked for it to be safely implemented pervasively. Currently there aren’t even 50 standards for the whole range of additive manufacturing materials. Even traditional glass blowing has over 100. The potential is there not only to get better performance out of every item, but to create a whole range of entirely smarter, more environmentally friendly products unthinkable in the past: Nuclear spare parts, efficient heat exchangers and wireless communication without electronics, to name but a few.

Westinghouse Looks to Advance 3D Printing in the Nuclear Industry

Now power company Westinghouse plans to be the first company to install a 3D printed fuel component in a commercial nuclear reactor.
Westinghouse is looking to lower the cost of replacement parts as well as to speed the qualification of 3D printed materials.

“These cost and lead time reduction estimates still look appropriate for certain replacement castings, using current cost estimates for AM casting moulds and the associated foundries/casting processes,” said Clint Armstrong, Advanced Manufacturing Expert at Westinghouse.

Read the full article here.

HiETA Uses Renishaw Metal 3D Printer to Take Heat Exchangers From Prototyping to Commercial Production

HiETA develops metal AM methods to produce lightweight, complex structures for heat-management applications, such as internal combustion engine components, turbo machinery, recuperators, and heat exchangers for fuel cells. The first successful 3D printed component was built in 17 days, which HiETA and Renishaw worked to bring down to eighty hours by optimizing the process parameters and improving both the software and hardware. According to tests, the component, which achieved 30% lower weight and volume, met the requirements for heat transfer and pressure drop.

Read more about it here.

3D Printing Wireless Connected Objects

University of Washington researchers have developed a way to 3D print plastic objects and sensors capable of communicating wirelessly with other smart devices, without the need for batteries or other electronics.


Follow us on Twitter to keep updated on AM & IIoT related news as well as updates to Authentise’s services!